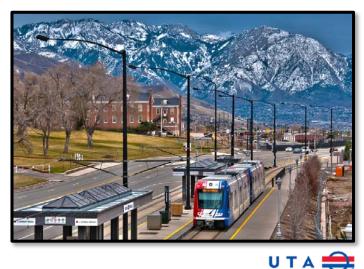


Translating Data

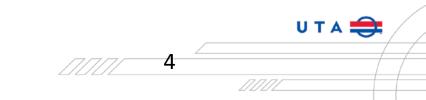

Daniel Hofer Manager- State of Good Repair Utah Transit Authority

About UTA

- Public Transit District Nine Counties
- **Population** approx. 2.3 million
- Linear Geographic Area 108 miles long by 50 miles wide
- Currently Employs approx. 2400
- **Operate** 737 Buses, 475 Vans, 117 LRVs, and 69 Commuter Rail Vehicles

 Key components identified in UTA as necessary for a complete asset management system.

UTA Asset



FTA Condition Assessment Requirements

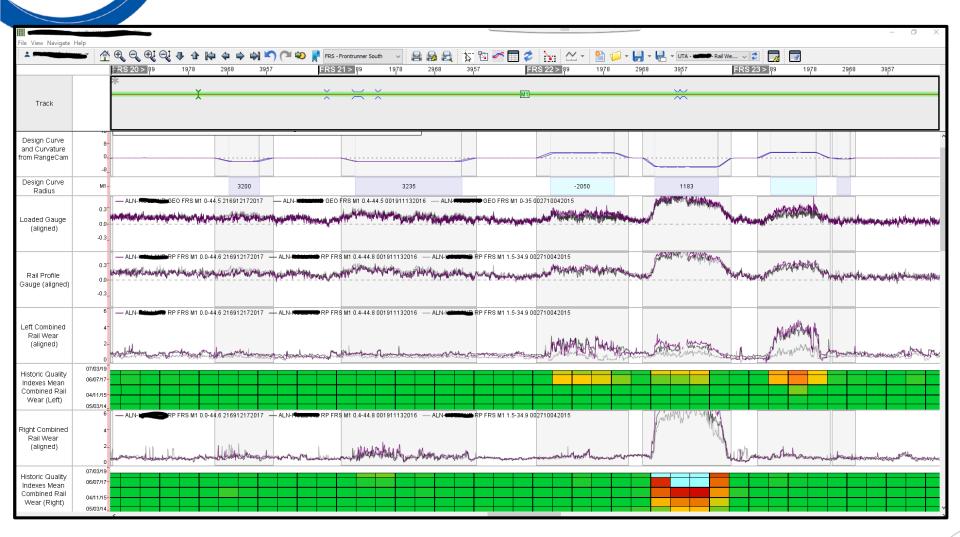
- Vehicle Age
- Track Performance
 Restrictions
- Facilities Condition Ratings

I've got this data, now what??

How to understand what data is telling you

Need a way to cut through the data

- Establishing Metrics
- Establishing Thresholds
- Establishing means of separation
 - More advanced condition assessments
 - Risk Evaluation
- Establishing consumable formats
 - Colors are helpful



Handy Separation Metrics

- Vehicles
 - Age (FTA Required)
 - o Consider Cost per Mile
- Linear Assets
 - o Track
 - Performance Restrictions (FTA Required)
 - Consider Wear
 - o Overhead Wire
 - Performance Restrictions (FTA Required)
 - Consider Wear
- Facilities
 - Condition Assessments (FTA Required)

Rail Wear Measurements

UTA 😂

OCS Wear Measurements

_____9

///

Facility Condition Data

10

Foundation, Basement, Sub-structure	Substructure everor Malk/Envelope	Exterior Windows	Exterior Doors	Roof (Surfaces, Drain System)	Skylights	
						Ц
1	2	3	4	5	6	
3.00	3.00		2.20	2.10		2
3,00	5.00		2.20	2.10		2
3.00	2.60	2.40	2.40	2.60		3
4.00	4.00	3.00	3.50	4.00		4
3.00	4.00	3.50	3.00	2.50		4
4.00	4.00	4.00		2.20	3.00	4
3.40	3.00	2.60		2.00		2
2.60	2.70		2.10	2.10		2

////

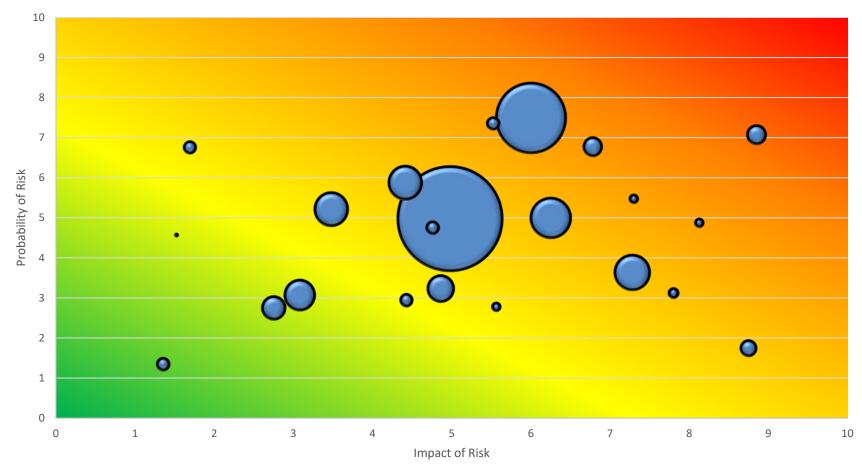
U T A 킂

Applying Risk Consideration

υ τ Δ 🚍

11

- After running calculations:
 - o Likely get a number of items with the same score/ranking
 - o Likely need a separation value
 - Need to decide whether to apply at asset or project level.


Risk = Consequence * Probability

Projecting the Data

12

Project Risk Comparison

Analytics of Data

Collection

Inventory Data (Age)Condition AssessmentsOperational Data

Framing Efforts

- Structuring Analytical Platform(s)
- Could be advanced software or something more basic
 Establish thresholds/ranking
- approach/prioritization criteria

Running Calculations

End goal quantifiable results
Prioritization/Ranking vital to next step
Sort scores highest to lowest

Build Projects

13

U T A 🚝

- Must remain open-minded during this process
- Understanding this is not the end of the process.
- Project budgets should not be constrained/trimmed at this point

Final Thoughts

- State of Good Repair vs Positive Train Control Comparison
 - Two of the biggest Federal initiatives currently underway
 - o Both heavily dependent on data analysis
 - Root Cause/Action Plan development
 - Decisions based on data
 - Agencies/properties are required to collect, analyze, and report on performance of systems
- Effort geared towards helping agencies/properties make correct decisions in regards to their operation based on risk evaluations and need.

