Asset Management
System Implementation & Integration

July 17, 2012
About the LIRR

• Chartered April 24, 1834

• Agency of the Metropolitan Transportation Authority (MTA)

• Commuter Railroad Serving Nassau and Suffolk Counties (Long Island) and Queens, Brooklyn and Manhattan (New York City)

• 11 Branches

• 3 Western Terminals –
 ▪ Penn Station (Manhattan)
 ▪ Atlantic Terminal (Brooklyn)
 ▪ Hunterspoint Av (Queens)

• Jamaica Station - LIRR’s hub, served by 10 Branches
About the LIRR

FLEET
1,006 Electric MU Cars
134 Bi-Level Coaches (Diesel-hauled)
23 Diesel Locomotives
22 Dual Mode Locomotives

INFRASTRUCTURE
Over 661 miles of track
124 Passenger Stations
294 Grade Crossings
750 Overgrade/Undergrade Bridges
29 Viaducts
73 Interlockings
328 miles of 3rd Rail
108 Substations
Asset Management – Drivers

• Since 1982, the MTA agencies have had a series of 5 Year Capital Programs, totaling $75 billion in capital investments (1982-2009)

• Capital Planning Process
 ▪ Asset Inventory
 ▪ Twenty Year Needs Assessment
 ▪ Development of 5 Year Capital Program

• Recent Financial Challenges – Re-examine future assumptions of both funding and project scoping
Transformative Projects

• In past LIRR Capital Programs, much of the investments were large scale:
 ▪ Large Scale Fleet Replacement
 ▪ Construction of High Level Platforms at all Diesel Stations
 ▪ Major Investment in Jamaica Station and Atlantic Terminal
Jamaica Station – Before
Station built 1913
Jamaica Station – After
Station Renovation 2002 - 2005
Atlantic Terminal – Before
Station building built 1907 & Demolished 1988

Station Building - 1986

Platform - 2001
Atlantic Terminal – After
Station Renovation 2004 - 2010
Increased Focus on Lifecycle Costs

Moving forward, the LIRR’s focus will be more on minimizing lifecycle costs of assets:

– Examination of Inspection and Maintenance Practices
– Identify Candidates for Component Replacement, focusing on Signals and Substations
– Assess & Prioritize Assets in a more detailed way (i.e. risk, criticality and interdependency)
– Recognition of our unmet data needs, particularly in regards to Maintenance / Repair Costs / Decision Support
Enterprise Asset Management (EAM)

• Implement an EAM program to achieve systematic, optimal and sustainable asset management at the lowest lifecycle cost:
 • Deliver necessary outputs to the asset managers and decision-makers
 • Deliver outputs valued by customers, funders and other key stakeholders
• EAM Benefits:
 • Understand Risks associated with Capital Assets & how these Risks change over time
 • Corporate impact / consequences of increasing or decreasing capital investment levels of a particular asset
 • Provide asset data and information to decision makers on multiple levels that facilitates knowledge-based decisions
 • Consistent asset management framework company-wide
Path Towards EAM

• **Rolling Stock**
 - Rolling Stock Maintenance – Replaced legacy software system with Maximo
 - Fixed locations – Hillside, West Side Yard, Morris Park / Richmond Hill
 - Major Fleet Replacement Effort
 - Implementation of Reliability Centered Maintenance (RCM) Program
 - Need for Data
 - Three Types of Rolling Stock:
 - M-3 Electric Multiple Units (1984 – 1986)
 - M-7 Electric Multiple Units (2002 – 2007)
 - Diesel / Dual Mode Locomotives & Bi-Level Coaches (1998 - 1999)
Planning EAM

Business Process Analysis

• Understand how assets are managed today
 - Identify Current Inspection / Regulatory Requirements
• Compare to industry best practices (PAS55)
 - Determine EAM maturity level
• Examine:
 - LIRR’s business needs and data required for informed decision making
 - What level of detail and frequency of inspection is appropriate
 - Changes / modifications to inspection process
 - Risk and criticality of assets
 - Policies / Resources needed to implement changes
 - Support and training requirements for business process change and technology implementation
Bringing It Together

Building Upon Recent Experiences

• Lessons Learned
 ▪ Already implemented new RCM program for Fleet, done in conjunction with large-scale fleet replacement

• GIS
 ▪ Recent substantial investments in Corporate GIS
 ▪ Training / Maintenance of GIS network
 ▪ Active Users throughout Engineering, System Safety, etc.

• Recognized Unaddressed Data Needs
 ▪ Make informed investment decisions / prioritization
 ▪ Coordinate / refine data that was being collected / maintained by various departments / divisions with goal of migrating to corporate resource
EAM and Geospatial Technology

SPATIALLY ENABLED ASSET MANAGEMENT

GIS Data
- ASSET LOCATION INVENTORY
- Location attributes
- Linear reference

Stores the assets that reside at a geographic location

Stores the geographic locations at which assets reside

Geographic Information System

Asset Life Cycle Management
- Material stock/inventory
- Installation
- PM
- Repair
- Decommission
- Replace
- Asset hierarchy
- Cost tracking
- Discrete and linear assets

Asset Management Data
- ASSET INVENTORY
- Attributes
- Specifications
- Condition

Asset Management Information System

Stores the assets that reside at a geographic location

Stores the geographic locations at which assets reside

Geospatial Information System

Asset Location Management
- Spatial location
- Geographic visualization
- Spatial hierarchy
- Spatial query
- Spatial analytics
- Spatial cost tracking
- Discrete and linear assets

Stores the geographic locations at which assets reside
Map Interface - Bridge Flags

You can create, modify, and delete features on the non-versioned map, and link Maximo records with geographic information system records.

Asset: 21-C-935
Status: OPERATING
Feature Class: LIRR_BRIDGE_V1

Map showing various locations such as Glen Cove, Oyster Bay, Babylon, and New York.
Infrastructure - Where to Start?

- **Line Structures (Bridges, Viaducts, Tunnels & Culverts)**
 - Set Inspection / Reporting Requirements
 - Biggest Rehabilitation Backlog
 - Majority of Bridge Projects are not full Replacements
 - Need for Data
 - Structures Department Strong Supporter of EAM
 - Deterioration / Hidden Problems / Bridge Strikes
 - Impact on Service
 - Concentrated in high traffic areas
 - Age of Bridges
 - Capital & Operating Funded Work
 - Geographic Nature / Involves other Assets (Signal, Power, Comm., etc.)
<table>
<thead>
<tr>
<th>ASSET CATEGORY</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
<th>BUSINESS ASSET MODELS</th>
<th>ASSET INVENTORY</th>
<th>FAILURES OR INCIDENTS</th>
<th>ASSET CONDITION</th>
<th>WORK MANAGEMENT</th>
<th>ASSET WORK HISTORY</th>
<th>TRACKING COST</th>
<th>PLANNING AND DECISION MAKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUIDEWAY</td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td>Bridges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tunnels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Viaducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parking Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High Tension Tower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Culverts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stations</td>
<td></td>
<td></td>
<td></td>
<td>Station Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Platforms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Canopies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escalators [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elevators [1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overpasses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Parking Lots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Strategy Planning

• **Power Substations**
 - Total of 108 Substations / Breaker Houses
 - Six date from 1945 - 1948
 - 57 Substations were built between 1970 and 1972
 - Electrification to Huntington
 - Power Demands of M-1 Fleet
 - Operational Challenges
 - Property Challenges
 - Balance resource availability with Operational Demands, while factoring in Risk
 - Critical nature of Queens substations
 - East Side Access Service Requirements
Requirements for Success

• Corporate Buy-in / Long-term commitments at all Levels
• Dedicated resources and support at the department level and the capital level
• Clearly defined EAM framework including policy, strategy, initiatives, and measurable goals
• Clearly defined roles, responsibilities, and processes that focus on achieving corporate goals
• EAM Working Groups – project level support and coordination
• EAM Executive Committee – EAM monitoring and issue resolution