State of Good Repair Roundtable Chicago, Illinois

Asset Management Systems MBTA Approach and Lessons Learned

Eric R. Waaramaa

Deputy Director of Financial Planning

July 23, 2010

MBTA Profile

- • 5th largest transit property, based on ridership
- Oldest subway system (opened in 1897)
- Multimodal (4 rapid transit lines, 182 bus routes, 5 BRT lines, 14 commuter rail lines, 3 ferry routes, paratransit)
- 175 communities served
- 1.2 million passengers per day
- **◆** 55% of all work trips to Boston are made on the MBTA

Fiscal Challenges - A Familiar Story?

- The transit agency has the responsibility to be a good steward of the system and meet customer expectations
- But capital needs of an antiquated system are growing faster than revenues
- Expansion has placed a strain on limited capital and operating revenues

Maintenance and modernization of the current system must be the top priority

Defining the Problem is the First Step

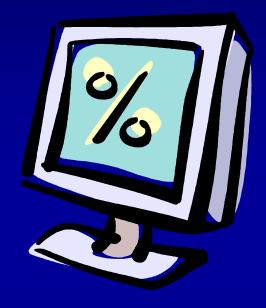
- The first step is understanding the scope of the problem − i.e., the current condition of existing assets
- Only then can the transit agency set SGR goals and determine capital funding levels required to achieve them.

The asset management system is your friend

Defining SGR (at the MBTA)

- - With regular maintenance, assets will operate as intended, without restrictions, throughout their useful life
 - In general, assets within their useful life are considered to be in a state of good repair
- Backlog: The total cost to renew or replace all assets that are currently beyond their useful life, based on MBTA and industry standards

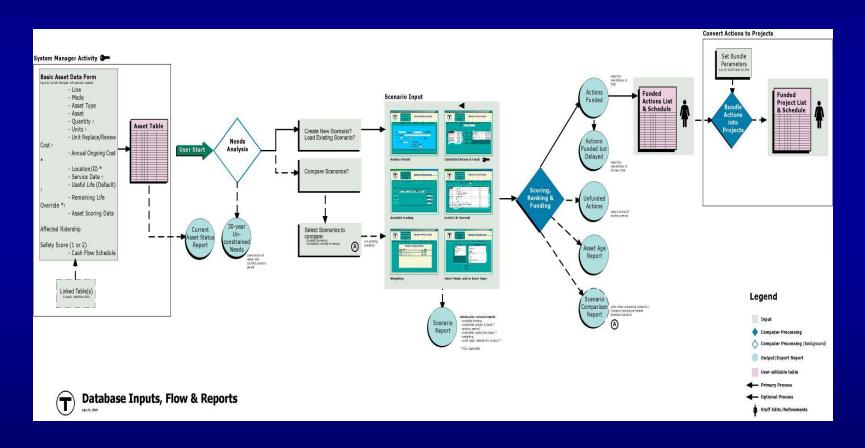
SGR Database – Why do it?


To develop a uniform, replicable and objective method for identifying and prioritizing capital renewal and replacement needs

The SGR database can help to:

- Determine the current state of the agency's capital assets
- Identify measures/funding levels required to bring system to State of Good Repair (or least maintain current condition)
- Analyze the impacts of various funding and policy scenarios
- Provide quantitative analysis for prioritizing/selecting projects for capital plan
- Articulate the case for additional capital funding (e.g., State and Federal)

SGR Database – What is it?

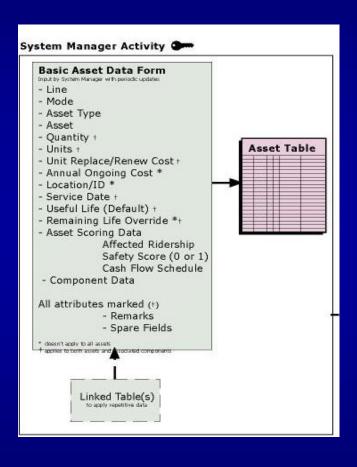

The SGR database is a comprehensive, dynamic database and analysis model for capital planning

- Comprehensive: Contains information for over 2,400 individual asset line items
- Dynamic: The database is not static; it requires periodic data updates from managers
- Analysis Model: Provides an objective assessment; reports consequences, and generates "what if" scenarios
- Capital Planning: It provides input for capital reinvestment and renewals; it is not a maintenance database

SGR Database - How does it work?

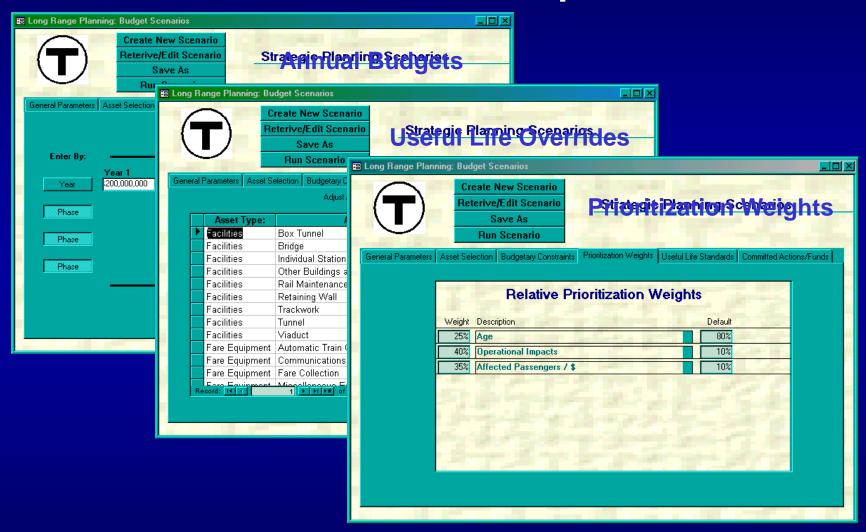
Data Inputs, Scenarios, Scoring System - Outputs

The SGR Database – Data Inputs



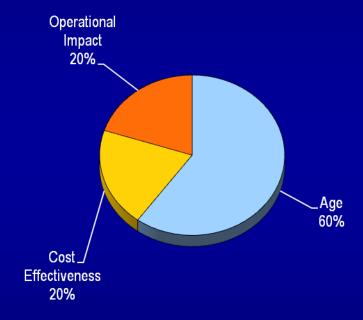
- **▼** Stores information about all MBTA asset types for example:
 - Vehicles (Revenue, Non-Revenue)
 - > Facilities, Yards & Shops
 - Stations
 - Elevators & Escalators
 - > Tunnels & Bridges
 - Power
 - Signals
 - Fare Equipment
 - Parking Facilities
 - > Track

The SGR Database – Data Inputs



• Asset Attributes:

- Asset Type & Quantity
- Location (e.g., Mode, Line)
- Service Date & Age
- Useful Life (Default)
- Remaining Life (Override)
- Replacement/Renewal Cost
- Asset Scoring Data


The SGR Database – Scenario Inputs

The SGR Database – Scoring System Inputs

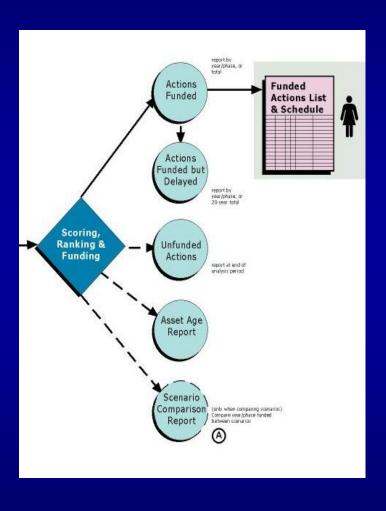
Default Weighting

(weights variable)

Age

- Age as % of Service Life
- Measures service quality and reliability

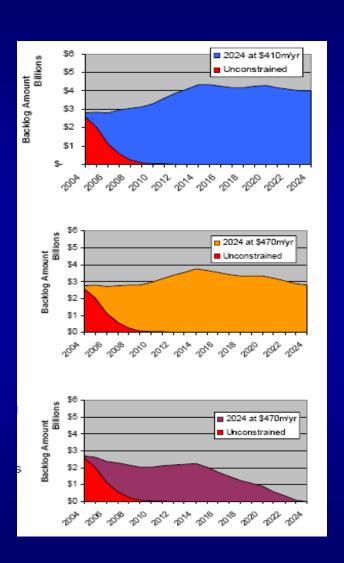
Operational Impact


- Yes/No (Selected assets are essential to system operations)
- Measures how essential asset is to daily system operations

• Cost-Effectiveness

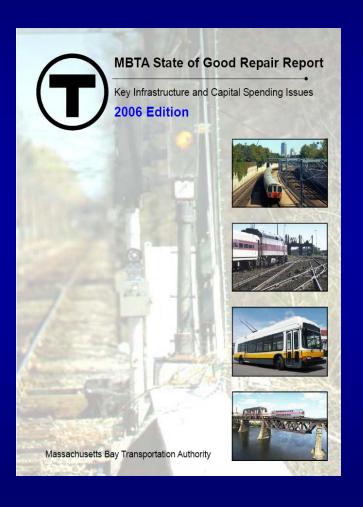
- Ridership/Cost of Action
- Measures customer service impacts, in relation to cost

The SGR Database - Output


- Ranks capital actions, based on scoring system
- Determines system impacts from various investment scenarios (e.g., resulting backlog over time)

The SGR Database – Output

State of Good Repair Backlog = \$2.7 billion*


- ◆ Chart 2 Investing \$470M annually maintains the backlog at \$2.7 billion

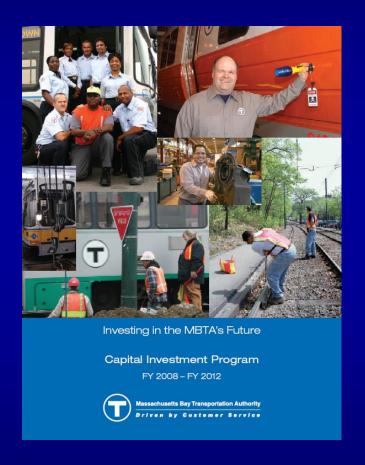
^{*}Analysis performed in 2006

The SGR Database – What we learned

2006 SGR Analysis/Report:

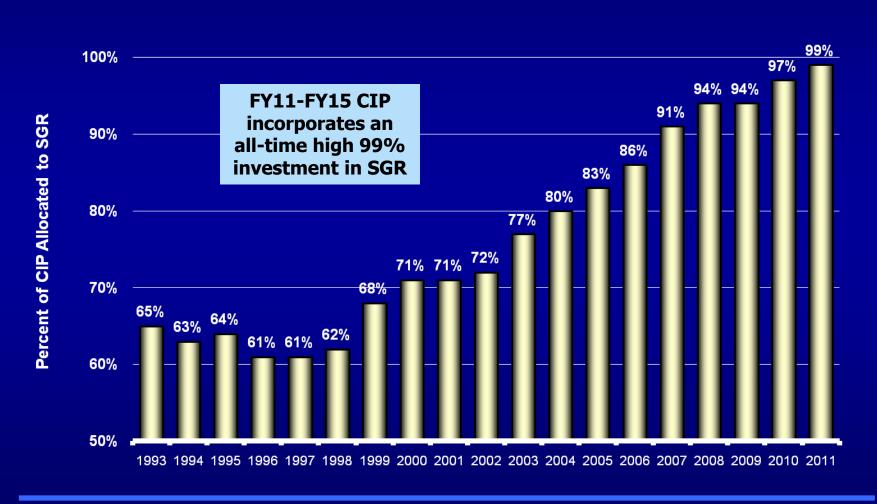
- Backlog of capital investments required to achieve SGR estimated at \$2.7 billion
- \$620 million annual reinvestment required to eliminate backlog in 20 years.
- \$470 million annual reinvestment needed just to maintain current SGR backlog (becomes MBTA commitment)
- Failure to make this annual investment will result in downward spiral of increasingly unreliable service and declining ridership

(SGR asset data currently being updated)

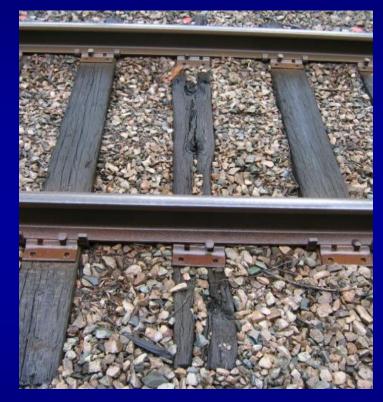

SGR Benefits: Public understanding of problem

- Quantitative/objective SGR analysis promotes public understanding of the problem
 - SGR service life/backlog definition is easily understood
 - SGR backlog often cited by press
- Better legislator understanding of problem leads to favorable action
 - State has committed to pay capital costs for future system expansion (as well as future operating costs)
 - \$160M annual operating subsidy
 - Understand need to focus on SGR

SGR Benefits – New capital planning focus



- - To maintain \$2.7B SGR backlog (based on 2006 analysis)
- - A "fix-it-first" strategy
 - A focus on less visible but more critical projects
- - A higher percentage of CIP dedicated to SGR (less expansion)


SGR Benefits – More dollars to SGR

FY2011-FY2015 CIP Focus: SGR – 99% of MBTA capital dollars

The SGR Database – Results (Track)

Before

After

The SGR Database – Results (Stations)

After

The SGR Database – Results (Tunnels)

After

New Equipment for Pump Rooms

The SGR Database – Results (Power)

Before

After

The SGR Database Just one tool in the capital planning toolbox

- The SGR output is incorporated into the capital planning process

MBTA Capital Planning – Other Factors

- The MBTA ranks projects based on five factors specified in its enabling legislation:
 - Factor 1: Safety, Health and Environmental Impacts
 - Factor 2: State of Good Repair
 - Factor 3: Cost/Benefit
 - Factor 4: Operational Impact
 - Factor 5: Legal Commitments

Capital Project Selection – An Example

Replace the Roof of Everett Subway Repair Facility

Capital Project Selection – An Example

- Scope: Roof replacement at Everett subway repair facility
- Safety concerns
- SGR project
- Productivity and efficiency
- Repair of all T subway cars
- No legal commitment under ADA, or other
- Cost: \$1.6m

Factor 1: Safety, Health, Env. (20)	16
Factor 2: SGR (20)	15
Factor 3: Cost/Benefit (20)	11
Factor 4: Ops Impact (20)	12
Factor 5: Legal Commit. (20)	0
Total Score (100 Max.)	54

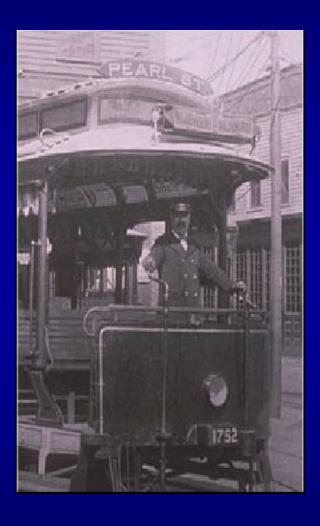
The SGR Database - Under Construction

- New SGR module under development, to help answer the following questions:
 - What is the impact on the operating budget if funding constraints reduce annual capital reinvestment?
 - What is the impact on the operating budget if the MBTA defers an asset replacement or renewal?
 - Does replacing an asset earlier than needed reduce annual maintenance expense?

SGR Database – Where do we go from here?

- **▼** Build upon and improve current model/process:
 - Update more frequently
 - Bring database updates and modeling in-house
 - Improve "buy-in" at all levels of agency
 - Incorporate safety
 - Include condition and performance metrics
 - Make a more critical factor in capital planning and project selection

- Learn more about what other transit agencies are doing:
 - Best practices; what's worked; what hasn't; and why?
 - FTA guidance/support


SGR / Asset Management – Keys to Success

- Department managers must see the benefit of inputting accurate data, and believe in the outputs
- Upper management must see the SGR database as an important tool for asset management, capital program development and long-term financial planning
- Keep it simple. If understood by State policymakers and legislators, the SGR database can be an important tool for documenting the capital backlog and making the case for increased funding.

State of Good Repair - Conclusion

- - Better define the current problem
 - More accurately forecast future capital funding needs
 - Optimize investments (i.e., best value)
 - Make an argument for increased capital funding levels

It's well worth the effort