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Metric Conversion Table

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2000 lb) 0.907 
megagrams 

(or "metric ton") 
Mg (or "t") 

TEMPERATURE (exact degrees) 

oF Fahrenheit 
5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 
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Abstract
This report summarizes current computer simulation capabilities and the 
availability of near-real-time data sources allowing for a novel approach of 
analyzing and determining optimized responses during disruptions of complex 
multi-agency transit system. The authors integrated a number of technologies 
and data sources to detect disruptive transit system performance issues, 
analyze the impact on overall system-wide performance, and statistically apply 
the likely traveler choices and responses. The analysis of unaffected transit 
resources and the provision of temporary resources are then analyzed and 
optimized to minimize overall impact of the initiating event. 



FEDERAL TRANSIT ADMINISTRATION 	 1

Executive Summary
This project was led by a team at the University of Chicago. The principal 
investigator was Dr. Hubert Ley, Director of the Transportation Research and 
Analysis Computing Center at Argonne, holding a joint appointment with the 
University of Chicago initially through the Computing Institute (CI) and then 
later through the Consortium for Advanced Science and Engineering (CASE). 
His work includes the development of tools to capture and analyze the massive 
static and dynamic data, develop storage strategies, develop the underlying 
databases for efficient access and relational consistency, develop features in 
the POLARIS network editor to import and edit the transit schedules for all 
local transit agencies, and perform spatial analysis to automatically match 
the various spatial entities (stops, stations, transit links, road networks, rail 
lines, walk ways) for cross-reference and to create a consistent simulation 
network from the various data sources. His work also included the provision 
of computing resources, e.g., designing, configuring, and operating the data 
servers to accommodate reliable and redundant data capture from real-time 
sources. He also developed a number of prototype implementations of the 
planned software development to guide the more complex development in 
high performance implementation for POLARIS. This includes the development 
of initial transit routing algorithms based on the data derived from GTFS and 
stored in SQL databases to ensure that this approach was feasible as well as the 
development of parallelization methods for the microsimulation of vehicular 
traffic. 

The software development for POLARIS was otherwise led by Dr. Joshua Auld, 
leading a team of developers in Argonne’s Transportation Research Systems 
Modeling and Control Group, which is part of the Energy Systems division 
at Argonne. His primary work included the design and development of the 
agent-based activity model as well as the development of the transit intercept 
survey. He also worked closely with UIC on the implementation of algorithms 
and software applications that use the survey’s results in POLARIS to modify 
traveler choice in a statistically accurate manner when encountering transit 
disruptions. His team worked under joint appointments with the University 
of Chicago as well. Dr. Ömer Verbas was responsible for the development of 
the transit simulation capabilities in POLARIS and developed the complex 
routing algorithms and the interaction of transit vehicles with vehicles on 
regular network links. Randy Weimer and Shon Driscoll worked on software 
implementations and updates, hardware compatibility, and platform 
independence of POLARIS. 

The transit intercept survey was performed by a team at the National Opinion 
Research Center under the direction of Josianne Bechara and Angela Fontes. The 
group developed the survey to ensure that it was statistically corrected for bias, 
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EXECUTIVE SUMMARY

in close collaboration with Dr. Auld and Dr. Ley, who developed the web-based 
survey logic and user interface. NORC deployed personnel to 100 transit stops and 
station in the region, with each survey location being operated for 4 hours. 

The work on implementing the survey results into the activity-based travel 
model was led by Kouros Mohammadian, Professor and Department Head 
of the Civil and Materials Engineering department at the University of Illinois 
at Chicago. The primary developer and implementer of the algorithms, 
methodologies, and software implementations was Dr. Nima Golshani, 
supported by Ehsan Rahimi and Ramin Shabanpour. The team worked closely 
with Dr. Auld to implement the logic in POLARIS. 

A team of researchers at the Illinois Institute of Technology performed 
background research on emergency evacuation and response strategies, 
determined data sources, developed case studies, and supported Dr. Ley’s 
development of the POLARIS network editor with detailed verification of 
network coding and strategies. The team was led by Dr Zongzhi Li, Director of 
Transportation Engineering and Infrastructure Engineering and Management at 
the Armour College of Engineering. His team included Yongdoo Lee, Yunseung 
Noh, Lu Wang, and Ji Zhang. 

The work on the Bayesian short term demand forecasting model was led by Dr. 
Vadim Sokolov, a former team member of Dr. Ley’s group at TRACC, who is now 
Professor for Systems Engineering and Operations Research at George Mason 
University. He holds a Ph.D. in Mathematics, and worked closely with Tuan 
Le to analyze the fare card data and automatic passenger counter data made 
available by Pace (data that could be captured and made available in real time in 
the future but that is currently made available with delay after being processed 
and download in the operator’s facilities). Another former team member 
at TRACC, Dr. Kuilin Zhang, is now a professor at Michigan Technological 
University in the Department of Civil and Environmental Engineering. He has 
a strong background in transportation systems modeling and developed the 
optimization methodologies for determining the best use of transit vehicles 
under system constraints. 

The work performed under this project would not have been possible without 
relying on extensive knowledge of hands-on transit operations, such as 
the typical constraints operators are under, background knowledge about 
procedures and operation of transit agencies, availability of the various 
data sources, vetting of methodologies and assumptions about operational 
capabilities, and providing deep insight into the needs of the transit agencies. 
James Garner of PACE was instrumental in supporting the team with in-depth 
knowledge on these issues. 

Details of the research work conducted can be found in the report. 
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Context and Project Overview1  
The Chicago metropolitan area is one of the largest and most dense 
concentrations of people, industry, and commerce in the U.S. As a 
transportation hub, the region must be prepared to quickly recover from natural 
and man-made hazards. At the same time, transportation networks are a critical 
resource in disaster management and recovery operations. Transit systems are 
needed for the (1) evacuation of exposed populations, (2) transport of injured 
persons, (3) movement of emergency personnel and first responders, and (4) 
delivery of needed supplies. 

As witnessed in recent natural disasters, the lack of evacuation planning and 
coordination among transit systems can be catastrophic. Hurricane Katrina 
underscored the need to plan for efficient mass evacuation procedures for non-
drivers and to design systems capable of prioritizing the transit needs of the 
most vulnerable populations before, during, and after disaster events. 

The Chicago metropolitan area is an ideal test bed for new emergency planning 
and response tools and strategies. A regional plan (GO TO 2040) has emphasized 
emergency preparedness as a key goal; the regional transit systems are 
interlinked and coordinated better in Chicago than in many other metro regions. 
The research team has extensive experience with transit-specific planning for 
emergencies. A team partner on this project, Pace Suburban Bus Service, was 
also the test agency for the Federal Transit Administration (FTA)-funded Transit 
Operations Decision Support System (TODSS). The project team was also 
responsible for developing the interactive Regional Transportation Simulation 
Tool for Evacuation Planning (RTSTEP) for the City of Chicago under the Regional 
Catastrophic Preparedness Grant Program funded by the Federal Emergency 
Management Agency (FEMA) in 2011. 

The Chicago area is vulnerable to many categories of hazards, including 
flooding, tornadoes, blizzards, and man-made emergencies, and the large 
geography of the region exposes residents to a variety of these hazards. The 
region benefits from a large, integrated, multimodal transportation system. This 
project leverages that transportation system to best help the region be ready 
for, respond to, and recover from emergency situations associated with the 
many hazards. 

In emergency situations, even those with access to vehicles may be unable to 
evacuate if there is not adequate planning and coordination among transit and 
emergency response systems. During Hurricane Rita in 2005, evacuation routes 
along the roads leading away from the Texas coastline experienced traffic jams 
that were 100 miles long. Many drivers were forced to turn around and head 

1Authored by Hubert Ley, University of Chicago, Argonne.
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back toward the storm, opting to wait out the weather in their homes rather 
than be completely exposed on the clogged roadways (Blumenthal, 2005). 
This is one of the reasons that integrated modeling and simulation tools were 
deployed and further developed, including population synthesis, behavioral 
models based on survey and statistical data, and a full traffic simulation of all 
transportation modes. 

This research investigated methods, techniques, technologies, and practices 
that can help emergency responders improve the efficiency of the decision-
making process for detecting, analyzing, and responding to emergencies, 
service disruptions, and catastrophic failures associated with multimodal 
transportation systems and recovering system services in an effective manner 
using available transit assets. 

The project assessed a variety of technologies and strategies, including those 
dedicated to locating persons and resources, improving communications, 
assessing the operability of transit systems, and re-deploying resources. 
Examples of these technologies and strategies include TODSS, automated 
vehicle location systems, improved sensor and detector networks, 
communication network technologies and protocols, both those between 
agencies and transportation/transit assets and those with the public (such as 
STARCOM21), variable messaging sign (VMS) networks, public alert broadcasts, 
e-mail or short message service (SMS) notifications, transit signal prioritization,
and others. The project also assesses the value of pre-planning for emergency
operations, including developing alternate transit routes/schedules, using bus,
bus rapid transit (BRT), and train assets for transit vehicle bridging, and other
strategies that can be developed with such a decision support tool.

The team also conducted an extensive survey that informed them about 
how individuals react to a variety of hazards (stated preference survey). This 
information was used to develop computational models of how the Chicago 
area operates under a number of emergency conditions and behavioral data-
driven assumptions. The project team then developed computational models 
that evaluate the most viable technologies and strategies in relation to various 
hazards to which they might respond. In addition, these models were integrated 
as a new Emergency Planning Module in the existing open source Planning 
and Operations Language for Agent-Based Regional Integrated Simulations 
(POLARIS) modeling system in use for the Chicago area. Given the far-reaching 
and unpredictable effects of emergency events, such a system greatly augments 
planning for and executing time efficient hazardous situations management. 

POLARIS is an open source transportation planning tool that simulates the 
transportation system in large metropolitan regions. It was created through 
funding provided by the Federal Highway Administration (FHWA) Office of 
Planning. It is distinguished from other similar tools by its faster-than-real-time 
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speed of operation and its ability to account for the choices and behaviors 
of a large population of individuals and their behavior while traveling, in an 
integrated simulation. These qualities make it an ideal foundation for examining 
how an all-hazards emergency might play out in the real world and providing 
meaningful operational metrics. 

Objectives 
The Chicago metropolitan area is one of the largest markets for public 
transportation in the U.S. Millions of people are safely transported each day 
on a system that constantly faces natural and man-made hazards. The project 
developed and showcased innovative technology for supporting emergency 
planning, response, and recovery that can be useful for transit agencies 
throughout the country. The project significantly advances FTA’s objectives for 
improving the ability of transit agencies to plan for, operate in, and recover from 
emergency situations. 

The project advances numerous FTA objectives that seek to enhance the 
operations of public transit agencies. The main product deliverable—the 
evacuation behavior and emergency response simulation capabilities in 
the POLARIS framework—is a toolbox of emergency planning scenario 
evaluation models customized for public transportation. By developing the 
capabilities using the existing open source POLARIS technology, the project 
was able to deliver the final product in a timely and cost-efficient manner. The 
system represents a significant technical accomplishment; in particular, its 
demonstration of integrating real-time data feeds with transportation modeling 
software represents an emerging technique that will continue to gain value as 
monitoring technologies and the quality of data sources advance. 

In emergency situations, communication is always a primary concern. This 
project synthesizes information from multiple data sources to allow for more 
efficient decision-making and communication in emergency situations. 
Numerous steps were built into the work plan to ensure the general 
effectiveness of the resulting technology, including the continued participation 
of the transit operators in the project, demonstrations of the technology, and 
use of the best available data for the simulations and decision-making tools. 

The transit project partners, Pace Suburban Bus Service and Metra Rail, 
provide multimodal transit services via fixed-route buses, special-route bus 
services, commuter rails, and vanpools to millions of people across the region. 
This project demonstrates how to use those multiple modes to improve upon 
an efficient public transportation system in an emergency situation with an 
increase in reliability, ability to function in an emergency, and speed of recovery. 
The team significantly advanced current technology that until now could not 
consider the resources, benefits, and challenges of all these modes in one 
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simulation. It allows for replication by other transit agencies that offer one or 
more of these modes of transportation. 

The suburban bus agency, Pace, deploys one of the largest networks of 
fixed-route bus services, paratransit, special-route, and vanpool services 
in the region. The partner rail agency, Metra, operates the nation’s second-
largest commuter rail system. Operating in a large, complex region, the 
combination of Pace and Metra was ideal for testing a model for national use 
that accommodates several modes of commuter transit. This project built 
on existing resources, such as the Pace-initiated TODSS system and the base 
POLARIS model, as well as on previous work in regional emergency evacuation 
planning, such as RTSTEP. 

The team leading the project had extensive experience, as outlined later in 
this report and comprised nationally-recognized transportation planners, 
engineers, project evaluators, and computer simulation experts. A 
multidisciplinary research team composed of the University of Chicago (UC), 
the University of Illinois at Chicago (UIC), Illinois Institute of Technology (IIT), 
Michigan Technological University (MTU), George Mason University (GMU), and 
the National Opinion Research Center (NORC) worked closely with local transit 
operators, including Pace, the Chicago Transit Authority (CTA), Metra, and the 
Illinois Department of Transportation (IDOT). These research entities have 
collectively participated in multiple efforts to model transportation systems 
under emergency conditions and previously developed tools that can support 
operators and policy-makers. This collaboration ensured the development of 
an operational support technology in addition to employable techniques and 
strategies that were vetted through analytical case studies. The technologies 
developed focus on hazardous event management needs in the Chicago 
metropolitan area, but due to the flexibility of the software and generality 
of the investigated strategies, they should also be widely applicable to other 
communities served by a transit system. 

The methods, procedures, techniques, and strategies for hazard impacts 
mitigation investigated will integrate transit assets into the core of developing 
countermeasures that are effective with respect to efficiency, response time, 
and cost that may be employed in case of various emergency situations. 
Involving Pace, Metra, and IDOT throughout the project helped to expand the 
knowledge and understanding of coordinated transit responses to emergency 
scenarios, pre-planning for and responding in real-time to hazardous situations, 
and identify areas for its potential improvements for broader applications. 
Further, the identified needs for emergency response planning improvements 
and products from the research project offer opportunities for researchers to 
explore scientific solutions to further advance such efforts. 
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Challenges 
The project addressed a number of issues and delivered new capabilities of 
high interest for local and national transit operators. The project conducted 
a technological review of hazard and emergency response capabilities but 
also learned about the many constraints under which transit agencies have to 
operate, including operational issues such as operating from many different 
and only loosely integrated dispatch centers, a strong focus on operational 
efficiency, a general lack of coordination between transit agencies when it 
comes to transit disruptions, and the difficulty of managing large operations 
in the region. These findings do not intend to criticize the transit agencies; the 
underlying issue is that a strong focus on resilience and emergency response 
naturally conflicts with an efficient day-to-day operation that is responsive 
to the ever-changing needs of a dense urban population. As a result, many 
otherwise logical response strategies are not feasible given their impact on 
day-to-day operations. Thus, the project concentrated on demonstrating the 
impact of a disruption on multiple agencies and a response optimization that 
may be based on strategies that may or may not be realistic at this time. It is 
obvious that simulations can only work in conjunction with actual emergency 
responders and their wealth of experience. 

Many transit operators use one or more command centers that contain a 
number of tools that target efficient daily operation but may not contain 
technologies that are designed to aid in planning for and responding to all 
hazards emergencies. This work attempted to implement such a capability, 
although the complexity of the approach is still a major limitation for 
practical implementation. The expanded POLARIS toolbox provides analysis 
of data already collected by transit agencies and provides new decision-
making capabilities to transit command centers. However, there are clearly 
limitations when using real-time data sources that are currently available. The 
improved collection and provisioning of real-time data over readily-available 
communication networks would be of great benefit if collected with better 
spatial and relational accuracy. For example, automatic passenger counter 
data and fare card data would be of much higher value for determining the 
current state of the transit network if the data were clearly correlated to specific 
transit stops and routes. The underlying problem is that the data a currently 
collected for a specific purpose, and secondary uses are difficult or impossible 
to correlate with other data sources. 

A key benefit of using a predictive computer model is that it allows local 
authorities to explore the possible effects of a number of different hazards and 
responses for which there may be little or no experience in-house. Creating 
and testing an array of emergency plans for a variety of hazards allows transit 
agencies to train more adequately and prepare their responders in advance of a 
true emergency. This project was tested on emergency scenarios in the Chicago 
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metropolitan area, which encounters a wide variety of natural and man-made 
hazards. The tool can significantly enhance emergency planning capabilities 
for transit operators. A major challenge was the lack of scalability of some 
components of the models, which made integration difficult and led to results 
that are too highly aggregated for evaluating localized effects. 

Local operators acquire a large amount of information about ridership patterns 
and the operational status of their assets; however, there may be a gap in the 
level of depth with which they understand the composition and travel behavior 
of the communities they serve. Although the modeling techniques used in this 
project have generally the potential to provide them with this information, the 
lack of resources to make use of this wealth of data is a great challenge. 

Task Overview 
The project resulted in the development of capabilities that can be used by 
transit agencies and emergency responders and resulted in a demonstration of 
a decision support tool for planning and operations management purposes. The 
project included research, development, and synthesis, followed by a capability 
demonstration and review by an independent third party. 

The research and deployment plan was structured as follows: 

• Review of Existing Methods, Techniques, and Technologies for All Hazards
Emergency Management – The first task of this project involved a review
of potential hazards ranging from emergencies and service disruptions
to catastrophic failures that might disrupt a transportation system and
technologies or response strategies that may aid in reducing the adverse
impacts of such hazards. The aim of this phase was to develop a set of
hazards, methods, technologies, and response strategies that could be
further evaluated in subsequent tasks. This task also provided a baseline
understanding of how institutional policies and decision processes are
oriented toward responding to potentially catastrophic situations. This
was used as the benchmark for how agencies are inclined to potentially
revise their policies after incorporating the results from simulations. This
task also involved the review of data sources and the collection of new
data regarding individual behavior under emergency scenarios including
individual responses to emergency management interventions.

• Development of Computational Models for Evacuation Demand and
Emergency Responses –  Design and development proceeded with creating
an Emergency Planning Module within the POLARIS simulation framework
capable of modeling the selected hazards and the responses to the hazards
using the transit system and further evaluating the efficiency of the
candidate technologies and response strategies. Updates to the POLARIS
simulation system included the addition of a Transit Module to support
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the use of transit assets for non-transit all hazards emergency responses. 
The POLARIS system was updated to account for individual behavior of the 
evacuation demand under emergency scenarios and the interactions of 
individuals with the transit system used for emergency responses. Finally, 
new visual paradigms and prototype implementations were developed 
to visualize results of emergency impacts before and after implementing 
emergency response strategies. 

• Development, Calibration, and Validation of Baseline Model – The transit
network details for the Chicago metropolitan area were added to update
the current POLARIS model for its function to a decision support tool.
The updated model was tested for functionality and was calibrated and
validated using properly-balanced field data to produce the baseline
Chicago POLARIS model for conducting the case studies pertaining to
hazardous events analysis and emergency management. Critical evaluation
of the baseline model were conducted through cross comparisons of
results generated from it.

• Investigation and Development of Operational Capabilities for Regional
Simulation – The properly-calibrated baseline model was further refined
to incorporate real-time sources of data on network performance from
a variety of sensors, probes, and other detection and surveillance
equipment. This includes the various Google Transit Feeds (both static
and dynamic) and the Chicago Train and Bus Tracker data. A review of the
data sources was performed to determine suitability and applicability for
this task. The potential for incorporating the sources into an operational
version of the simulation was evaluated. Ultimately, it was found that the
quality and reliability of the available real-time data sources were limited,
for a number of reasons. For example, the reliable cross-identification of
vehicle trace data and payment records was limited by insufficient coding
within the data sources, making it difficult to associate specific automated
passenger counters with bus stops, reconcile payment records with exact
stops, or match static and dynamic GTFS trip data reliably. An important
outcome from this study is that the spatial and temporal resolution
of a real-time data source is more limited than it appears in available
documentation; thus, a higher level of aggregation of such data had to be
employed, with a corresponding loss of precision.

• Design and Conduct of Case Studies – The metrics for the evaluation were
identified and defined, including reliability, speed of access, and efficiency
of operation. Case studies for implementing the baseline model were
designed in coordination with the various stakeholders involved. Three
categories of hazards—Emergencies, Service Disruptions, and Catastrophic
Failures—and a combination of two or three of the situations that occur
simultaneously or in close proximity were the subject of the simulation and
analysis. The scenarios were chosen with varying degree of probability of
occurrence as well as spatial locations. The primary scenario was chosen
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to be an event at Jefferson Park so all Chicago area transit operators were 
affected. The simulations included CTA buses and trains, Metra trains, 
and Pace buses as well as a dense and highly-urbanized population. The 
various cases of hazardous events were analyzed considering the use 
of transit assets in the response and recovery phases of the emergency 
management process. The baseline model was applied to evaluate transit 
and vehicular delays and the resulting congestion as well as safety impacts 
of alternative hazards management strategies and to develop effective 
countermeasures for the Chicago metropolitan area. 

• Demonstration and Evaluation of Project Results – This analysis revolved
around the successful demonstration of emergency response technologies
and strategies recommended as a result of the case studies. Results from
the scenarios were shared with stakeholders.

Project Partners 
The UC Computation Institute was the primary project contractor. Work was 
performed by staff members of the Institute who hold joint appointments 
with Argonne National Laboratory as well as by subcontractors from other 
universities listed below. Argonne National Laboratory is owned by the Federal 
government and is operated by the University of Chicago through a limited 
liability corporation, UChicago Argonne, LLC. Joint appointments at both 
Argonne and the Computation Institute at the University of Chicago provide 
a mechanism to tap into a broad range of expertise than would be otherwise 
available to nationally-significant research projects. 

Argonne and the University of Chicago work closely with international university 
and industry partners, being involved in hundreds of partnerships and 
cooperative research relationships. The University of Chicago and Argonne have 
numerous contracts with the universities involved with this project and could 
easily subcontract the work described in the statement of work. 

Argonne’s Transportation Research and Analysis Computing Center (TRACC) 
was part of the Energy Systems Division at Argonne (now part of the nuclear 
Engineering Division) and is one of the national user facilities within the national 
laboratory system providing dedicated computing resources and expertise 
exclusively to the transportation research field. The work was performed 
primarily by staff members of the Computation Institute at the University of 
Chicago affiliated with Argonne’s TRACC facility through joint appointments. 
Additional work was performed by the following partners in this project. 

• The IIT Department of Civil, Architectural and Environmental Engineering
was a subcontractor working primarily on the implementation of
emergency technology models, model calibration and validation, and case
studies.
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• The UIC Department of Civil and Environmental Engineering was a
subcontractor working primarily on the travel demand model specifically
as it applies to emergencies as well as the necessary data acquisition
through surveys.

• The MTU Department of Civil and Environmental Engineering was a
subcontractor working primarily on network model calibration and
validation, as well as case studies.

• The UIC Urban Transportation Center served as the independent evaluator,
as required by the project. This is a different department of UIC and was
not involved in the work performed by the other department mentioned
above.

• GMU became a subcontractor due to one of the key researchers taking
a position there. This work focused on real-time data sources and the
estimation of short-term demand driven by real-time data sources.

• NORC was subcontracted to perform an extensive survey of transit riders
across the region and intercepted several thousand travelers at 100 distinct
transit stops and stations to invite them to participate in an online survey
used to create models for transit rider behavior during transit system
disruptions.

Two major transit agencies in the Chicago metropolitan area also partnered on 
this project. Pace operates fixed-route, special event route, paratransit, and 
vanpool services in northeastern Illinois, most of which are in the inner- and 
outer-ring suburbs around Chicago, with some paratransit and commuting 
services in Chicago itself. Metra operates the commuter rail network in 
northeastern Illinois. 

All team members had rich experience in transportation planning, traffic 
management, and systems engineering. The formation of this particular 
team maximized the collective benefits of experience, expertise, and 
accomplishments of individual team members and effectively integrated these 
qualities for the thorough execution of the research program. 

Key Research Personnel 
Dr. Hubert Ley is Director of the Transportation Research and Analysis 
Computing Center (TRACC) of Argonne National Laboratory (operated by 
UChicago Argonne LLC). He holds a joint appointment with the Computation 
Institute at the UC. He received his doctorate in Mechanical Engineering in 
1994 from the prestigious RWTH Aachen University, Aachen, Germany, where 
he specialized in Nuclear Engineering, with a focus on the subject of simulating 
fission product transport in graphite fuel elements for high-temperature, 
gas-cooled reactors. While finishing his thesis in 1991, he visited Argonne as a 
visiting scholar and was hired to work on nuclear fuel simulations in Argonne’s 
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Fuels and Engineering Division. At Argonne, he worked extensively on reactor 
accident simulations, image processing, visualizations, sensor data acquisition, 
and digital data processing. From 1996 to 2001, he was the key developer of 
the International Nuclear Safety Center (INSC) network, a communications and 
collaboration project established by Congress and the Clinton Administration 
to enhance remote collaboration between the United States and various 
countries of the former Soviet Union on nuclear safety research and technology. 
Subsequently, from 2001 to 2006, he worked with the International Atomic 
Energy Agency on behalf of the U.S. Department of Energy on establishing the 
collaboration framework for the Asian Nuclear Safety Network (ANSN). In late 
2006, he became one of the initial team members forming the Transportation 
Research and Analysis Computing Center at Argonne under a large 
congressional SAFETEALU grant (2006 to 2012, Sponsor: Dawn Tucker-Thomas, 
RITA) with the goal of technology transfer from the national laboratory complex 
to the transportation research community. 

TRACC’s supercomputers, as acquired over the past years, are now the largest 
computing resource provided by the U.S. Department of Transportation 
(USDOT) to the research community. Dr. Ley was primarily responsible for 
developing advanced transportation simulation systems for supercomputers 
based on the USDOT TRANSIMS code. He developed complex transportation 
systems models (e.g., for Chicago), developed extensive training materials on 
the use of this software on supercomputers, taught dozens of training classes on 
the subject to the U.S. user community, and developed and supported a large 
number of projects using the shared supercomputers at TRACC for dozens of 
TRANSIMS users and user groups. He is still heavily involved in software design 
and development, focusing on visualization software as well as productivity 
software such as graphical user interfaces, adaptive run time environments, 
highly- structured network editing solutions, and similar technologies that 
are an essential part of dealing with the ever-increasing complexity of current 
transportation simulations. He became Director of TRACC in 2010 and has been 
responsible for several multi-million-dollar projects for USDOT, the Federal 
Emergency Management Agency (FEMA), the City of Chicago, and IDOT. Under 
his leadership, TRACC has implemented key software and simulation projects 
for emergency preparedness, such as the Regional Transportation Simulation 
Tool for Evacuation Planning (RTSTEP) software developed under the Regional 
Catastrophic Preparedness Grant Program for the City of Chicago in 2010 and 
2011. The development of the POLARIS framework, under an interagency 
agreement with the FHWA Office of Planning (Sponsor: Brian Gardner) is one of 
the more recent milestones in fusing the needs of the planning community with 
the needs of the emergency response community to leverage tool development 
with funding from both sources to address common and overlapping 
challenges. POLARIS is currently being developed and refined and served as the 
basis for the project’s toolbox. 
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As the Director of TRACC, Dr. Ley has also helped to establish a sizable capability 
in other technical areas, such as by helping USDOT’s Turner Fairbank Highway 
Research Laboratory (TFHRC) to transition from experimental hydraulics 
to computational fluid dynamics and multi-physics codes (Sponsor: Kornel 
Kerenyi) and by providing technical support and computing capabilities 
to the National Highway Traffic Safety Administration (NHTSA) Office of 
Crashworthiness (Sponsor: Stephen Summers). Other current projects involve 
evacuation planning for U.S. Department of Defense sites, an urban planning 
project, and analysis of transit response capabilities for FEMA Region 5 in 
Chicago. During his involvement with TRACC at Argonne, he built a diverse 
team of scientists and built extensive relationships with both local and remote 
universities and research organizations, positioning TRACC as an excellent 
source for performing complex and challenging transportation systems 
simulations. 

Dr. Joshua Auld is a Staff Scientist at Argonne’s TRACC and holds joint 
appointments with both the Computation Institute at UC and UIC. His primary 
research area is in travel-demand modeling, traveler behavior, travel surveying, 
and activity-based microsimulation modeling. He completed his doctoral 
studies at the UI and was a National Science Foundation Integrative Graduate 
Education and Research Traineeship (IGERT) fellow in a multidisciplinary 
research group focusing on the information technology aspects of 
transportation. His research has led to 16 journal publications, 17 peer-reviewed 
conference presentations, and 3 book chapters as well as a number of other 
presentations and technical reports and 2 guest editorials. He serves on the 
Committee on Travel Demand Forecasting and the Special Committee for Travel 
Forecasting Resources on the Transportation Research Board (TRB) of the 
National Research Council and was a recipient of the Ryuichi Kitamura Paper 
Award from TRB. 

Dr. Vadim Sokolov was a Computational Transportation Engineer at TRACC in 
Argonne’s ES Division and moved to GMU at the time the project started. His 
areas of expertise include mathematical/statistical modeling and scientific 
computing, optimization, discrete choice models, and regression analysis. He 
joined Argonne in 2008 after receiving a Ph.D. in computational mathematics 
from Northern Illinois University. At Argonne, he worked on developing models 
of transportation systems and was a member of the team that developed 
the RTSTEP, work sponsored by the U.S. Department of Homeland Security. 
Currently, he is a member of the team that works on developing the next-
generation transportation systems planning tool, which is sponsored by FHWA. 
He has a joint appointment with the UC Computation Institute. 

Dr. P. S. Sriraj is Director of Metropolitan Transportation Support Initiative 
and Research Assistant Professor at the Urban Transportation Center (UTC) 
at UIC. He served as Senior Associate at UTC from 2005–10, and his research 
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areas are public transportation systems, sustainability and transportation, and 
visualization of transportation. Other relevant topics are stakeholder analysis 
techniques, transportation asset management, and transportation equity. 
He has published numerous technical papers and reports, including over 20 
refereed journal papers, and serves on TRB’s Committee on Socio-economic 
Factors in Transportation and Environmental Justice. He is also paper review-
chair of TRB’s Committee on Environmental Justice and serves as the Research 
Needs Coordinator for both committees. He was a recipient of the Outstanding 
Paper Award from TRB and has been honored for his teaching by the Dean of 
Armour College of Engineering at IIT in Chicago. 

Dr. Abolfazl (Kouros) Mohammadian is a Professor of Transportation Systems 
at UIC. He has over 20 years’ experience in transportation planning and 
travel behavior research and has authored over 200 scholarly publications 
in scientific journals, conference proceedings, book chapters, and project 
reports. His research has covered various areas of transportation planning 
including travel behavior analysis, modeling of activity and travel patterns, 
freight transportation, travel survey, land-use, urban energy, and development 
of state-of-the-art travel demand models for implementation in practice. He 
is well-known for his computational analysis of transportation system as well 
as his advanced freight and passenger microsimulation models. He chairs the 
TRB subcommittees on Behavioral Processes and New Technologies and also 
serves on several other TRB committees, including Transportation Demand 
Forecasting, Traveler Behavior and Values, Telecommunications and Travel 
Behavior, Travel Survey Methods, Statistical Methodology in Transportation 
Research, and the Taskforce on Moving activity-based approach to practice. He 
received the 2007 Charley Wootan award, the 2008 Fred Burggraf award, and 
the 2011 Ryuichi Kitamura award from TRB in recognition of his contributions to 
transportation research. 

Dr. Zongzhi Li is an Associate Professor at IIT. He received a BE from Chang’an 
University in Xi’an, China and MSCE, MSIE, and PhD degrees (December 2003) 
from Purdue University in West Lafayette, Indiana. He currently coordinates 
the IIT Transportation Engineering Program and the Infrastructure Engineering 
and Management Program and serves as Director of the IIT Transportation 
Engineering Laboratory and the IIT Center for Work Zone Safety and Mobility 
(renamed as IIT Sustainable Transportation and Infrastructure Research Center). 
He is a Senior Research Fellow of the Reason Foundation, secretary of the TRB 
Committee on Transportation Asset Management, member of TRB Committee 
on Trucking Industry Research, member of the Task Force on Logistics of 
Disaster Response and Business Continuity, and member of the Special Task 
Force on Data for Decisions and Performance Measures. He also serves on the 
American Railway Engineering and Maintenance-of-Way Association (AREMA) 
Committee on Education and Training and is a member of editorial board of 
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Section 2 Tools, Data Sources, 
and Computing Resources2  
POLARIS, the most essential component extended as part of this project 
to address extremely detailed transit capabilities, is a fully-integrated 
transportation system simulation tool that uses an agent-based model of 
travelers, activities, road networks, transit schedules, land use information, 
zoning information, Census data, and travel activity surveys, its major 
components. It is also a dynamic application that simulates the competing 
actions and intent of all the various agents over time. The term “agent” applies 
not only to travelers but also to vehicles, traffic signals, and many other 
elements that are part of the overall model. In an agent-based model, each 
agent interacts appropriately with other agents on an as-needed basis; for 
example, agents in close proximity may act to coordinate their driving to share 
road space and avoid collisions. Agents may also coordinate their activities 
across a distance; for example, family relationships are an important factor in 
understanding emerging travel behaviors. In general, travel of family members 
is coordinated within a complex activity model so that ride sharing and the 
planning of coordinated pickups can be realistically simulated. 

Overview of POLARIS Concept 
The above description lays out a fundamental capability of the application—
it analyses a synthetic population of travelers across the region and builds 
a realistic set of daily activities for all individuals who create the need for 
transportation between those activities. This is a very important approach, 
because travel is rarely a primary activity but usually results from a need to 
move between primary daily activities. The data for creating the population 
come largely from Census data, although it is synthetically reconstructed to 
match spatial and socioeconomic aggregate data. In other words, the synthetic 
population is fairly realistic with regards to their choice of home location, work 
location, and the locations needed to complete daily activities (shopping, 
school, hospital visits, etc.). With regard to transit, travel survey data can be 
used to create a subgroup of travelers who organize their lifestyle around 
access to a transit system, even considering socioeconomic parameters and 
employment data. These travelers would choose to live and work at locations 
that are reasonably close to transit stops and hubs, including commuters who 
use a park-and-ride concept to get to their places of work. 

Generally, the choice of whether to use transit or other forms of transportation 
is not primarily driven by travel time considerations. Socioeconomic factors 
play a large role and vary from area to area. Accessibility to cars in dense 

2Authored by Hubert Ley, University of Chicago, Argonne.
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urban areas plays a large role but also is a personal choice when it comes to 
using park-and-ride options to commute to the inner city. For example, for 
the purpose of finding the shortest path in the network from place A to place 
B, a traveler would not necessarily compare transit options vs. driving. This 
behavior may change during transit outages or major disturbances and may 
deviate temporarily from a normal choice travelers make. For the purpose of 
establishing a baseline model, the choice of transit vs. driving was taken from 
activity surveys, which created a very reasonable ridership model. 

The above paragraphs can constitute a normal-day demand model. The 
term “demand” is used to describe the need for travel based on a thorough 
understanding of the population to move around to perform their varying 
coordinated activities. The term is used throughout this document, so it is 
important to understand it conceptually. This is distinctly different from the 
concept of supply, which is described in more detail in the following paragraphs. 
Demand describes the need for movement to do things, and the term “supply” 
is used to describe the network resources available to the travelers to do so. 

Supply is largely the road network, which is represented as a graph, simply 
a network of streets between intersections but including a number of more 
complex arrangements, such as ramps onto freeways, walkways that cannot 
be used by cars, bus stops along the road network, traffic signals that may be 
dumb or intelligent, and everything else that puts serious constraints on the 
movement of travelers. For example, individual buses and trains have capacity 
constraints, and all vehicles have speed limitations, which are also highly 
controlled on individual streets on the network. 

The complex task of assigning demand (travelers and their travel needs) to 
supply (the road network with vehicles and transit options) creates a complex 
competition for resources. All cars will have to keep speed-dependent distances 
from each other, change between lanes, and obey signals and signs and 
will encounter events all the time (triggering a sensor, reaching waypoints, 
and so on). In the past, traffic models would iterate between finding paths 
for each traveler based on congestion on each individual road segment and 
the development of this congestion based on their choice of path under the 
constraint of road capacities. Such models were largely static and were not 
responsive to sudden changes and disruptions. Specifically, these models were 
aggregated into time intervals throughout the days rather than progressing 
through time with the possibility of simulating events and changes to the 
network. 

The implementation as an agent-based system in POLARIS turns that logic 
around. Rather than assigning a route through the road and transit network 
to a traveler and then sending him on his way to see what happens when he 
encounters other vehicles, the agent is scheduled to make these decisions 
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himself in a continuous manner while traveling to his destinations. For example, 
a person planning to leave home at 8:00 am to arrive at work at 8:30 will be 
scheduled to determine his best route shortly before departure (this would be 
like a high-level plan not yet based on actual network performance but rather 
a general knowledge of conditions on a normal days). The agent executes a call 
into the POLARIS router, which could be compared to a Google Maps search. 
Other travelers have been on the way for hours and have started creating 
congestion already, so the traveler is advised to use a route based on current 
congestion levels. Once he leaves for his trips, he will stick to this schedule 
but will potentially experience delays that are emerging for a wide variety of 
reasons. If the additional delay becomes pressing enough, he will make another 
call into the POLARIS router and find a better alternative that he may or may not 
follow. 

The above description uses the fact that people make routing decisions not only 
based on the current congestion on the network but also based on travel time 
reliability experienced in the past. Historical knowledge is thus considered in 
the routing algorithm when it comes to high-level evaluation of possible paths 
through the network. Also, trips may vary with regard to their time points. For 
example, when driving to work, the departure time is flexible while the traveler 
aims for a specific arrival time (plus some spare time, probably). When leaving 
work, this logic may turn around. If the person leaves from work to pick up a 
child at daycare, arrival time at the daycare center may be the primary concern. 
In other cases, such as shopping, neither end of the trip needs to meet a 
particular criteria other than making the trip convenient. 

This logic also extends into a much larger picture. Although we are not generally 
thinking about this, the decision where we live and where we work and what 
travel we encounter in between will cause us to choose home and work 
locations based on travel. These decisions are often non-optimal or not even 
rational, but they need to be considered as a part of the important feedback 
from the assignment process back to the population and activity model. 

To summarize, the interplay of the demand model (travelers and their travel 
needs to accommodate their activities) and the supply model (street network 
topology and constraints, transit options) and the emerging behavior of drivers 
leads to a solution that resembles a real-world road network, its performance, 
and the movement of travelers. One major challenge is to model the behavior of 
individuals that is less than optimal (or not even rational). How do you address 
people that drive around for personal enjoyment? How do deal with people 
who hesitate to change their route because they are not familiar with the area? 
The short answer is that each traveler is an agent and may make decisions 
differently based on a number of criteria. Outcomes emerge from a set of 
parameters that can be individualized as necessary. For example, drivers could 
be assigned a preferred speed-dependent distance when driving behind other 
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cars, may exceed speed limits at different levels, or may change lanes more 
aggressively. The agent-based approach allows each agent to be constructed 
differently as long as they share the same basic feature. For example, an 
ambulance can be built on the model for a regular car but have additional logic 
and capabilities that are up to the programmer. Such ambulances could receive 
directions from a dispatcher, could trigger traffic signal priorities, and much 
more. POLARIS has been specifically designed to be extensible and build more 
complex agents based on the basic agents implemented in the base version. 

As part of this project, a transit model was implemented that interacts with 
the road traffic in an integrated manner, using the same underlying agent-
based approach. In this model, travelers determine the path through the 
transit network by evaluating all possible connections that could be made 
while minimizing travel time under constraints such as limiting or penalizing 
the number of transfers between routes. The model is closely integrated with 
the street network (as buses drive and interact with the traffic on the roads), 
includes walking modes as part of the transit routing, and implements more 
complex options such as park-and-ride. The transit stops and schedules were 
initially imported from Google’s General Transit Feed Specification (GTFS) and 
are based on exact real schedules of all routes and transit runs. The transit 
model even has feedback with the population synthesis and activity models 
because the proximity to transit stops determines whether travelers may 
choose transit options or not. 

Road Network 
One of the more essential design criteria of POLARIS is the use of relational 
and geospatial databases to store much of the configuration information. As 
outlined in the previous section, the POLARIS model distinguishes between 
two major entities, the demand model and the supply model. To recap, the 
demand model describes the need for all travelers to move between their 
primary activities during the day, and the supply model describes the resources 
available to accommodate these movements, with knowledge about the time 
of day, emerging congestion, the ability to change constraints on the fly (e.g., 
remove or increase bus runs on certain routes, close streets, communicate 
events through overhead signs, and more). 

The demand database is the output from extensive preprocessing, e.g., 
building the population, coordinating family activities, meeting socioeconomic 
parameters and matching them spatially, and more. In simple terms, the 
demand database provides input to POLARIS with regard to who wants to go 
from where to where at what time and how they are planning to accomplish 
this. This is certainly more complex that stated here, but for a conceptual 
understanding, the simplification is appropriate. It should be noted that all 
activities are performed at specific street addresses, and these locations have 
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been created in the supply database. One could think of them as individual 
addresses. In the demand database, their relationship to the street network is 
not significant, but their geospatial locations can be correlated with land use 
data, traffic analysis zones, Census zones, employment data, and many other 
data sources. Much of this is based on geospatial matching of these locations 
against polygons in GIS layers. 

The supply database does not actually know anything about individual 
travelers. The information in the supply database is rather an extensive and 
consistent description of the underlying road network, with regard to regular 
vehicles and transit vehicles. The level of detail is quite amazing. For example, 
signal systems and stops can be created at each intersection where appropriate, 
and there will be individual turn lanes if necessary. There are also a number 
of other network constraints that are defined in the network database, 
such as speed limits on all roads, one-way designations, turn restrictions at 
intersections, phasing and timing of traffic signals, connectivity at intersections, 
use limitations on streets and lanes such as bus lanes and walkways, sensors in 
the road, location of bus stops, the entire bus and train schedule for the region, 
and so on. 

The supply (or network) database, in all its complexity, is still reasonably small 
for modern computers to deal with. For example, the network database for the 
Chicago metropolitan area used in this project is approximately 1GB in size. 
Due to the use of database technology, the enormous level of detail can be 
reliably maintained and edited using a variety of standardized and custom tools 
(developed as part of this project). This provides a level of flexibility that makes 
work with the network manageable despite the large size. 

There are several key features of a database approach that help with 
maintaining and editing a consistent network at this level of complexity, and 
although it would be prohibitive to explain these mechanisms in all their detail, 
the following items give a brief overview how they apply: 

• Atomic transactions – There are a few modifications that a user may want
to make that affect just a single entity. For example, if the user changes a
speed limit on a particular street, the change will have no impact on the
topology of the road network. But that changes dramatically when the user
splits a link to introduce a new intersection. Instead of a single link, the
new version of the database will have two. There will be new connectivity
records and possibly signal records with new phasing and timing, and there
may be turn restrictions. If the application, like a network editor, makes the
slightest mistake in changing, deleting, and creating hundreds of records,
the network could be easily broken and cease to provide travel in this
area. Using a database means that the intermediate can never become
permanent by accident, and consistency checks will be applied when
committing the changes as a block. The consistency is enforced by the
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database engine, not by the user application, so this mechanism protects 
the database integrity even when using a faulty application to edit the 
database. 

• Relational integrity – This is closely related to the previous item. No record
can be deleted if it is still needed (referenced) by any other entity in the
network. For example, a street cannot be deleted if there is still a bus stop
on that street or a traffic signal at the intersection. Again, this is a powerful
mechanism to avoid damaging the topology of the network.

• Relational tables – Storing large data sets in database tables means that
many entities can be stored in a single file. This avoids the problem with
partial transmissions and inconsistent versions of data sets. Another
advantage is that large datasets need never be fully loaded into valuable
RAM in the application. A database provides very powerful mechanisms to
load just the data needed for a specific purpose, and will be automatically
very efficient with memory.

• Spatial extensions – Using a database with geospatial capabilities opens
up a whole new world of relating records with each other. In a nutshell,
rather than performing formulaic expressions (such as calculating the
Euclidian distances between X and Y values of two stops), spatial queries
operate on a much higher level and can used spatial indexes to speed up
these operations enormously. For example, a spatial query can fetch all
bus stops that are within a certain distance from a particular curved street.
This is a one-line instruction that would require coding of hundreds of lines
of custom code otherwise, and these queries are very fast if constructed
properly. Another example would be to find all street addresses that fall
within land use zones to assign land use information to these addresses.

The specific database implementation used for POLARIS is Sqlite3. Sqlite3 is not 
necessarily well known, but it is open source and is the most-used database in 
application development. The enormous user base assures that the application 
will be available forever and that the implementation is rock-solid and well-
tested at all times. 

To provide the geospatial capabilities, POLARIS uses the SpatiaLite extension 
library, a plug-in for Sqlite3. SpatiaLite has become a rock-solid implementation 
over the past years and is being widely used for major open source projects. 
This approach allows the use of powerful GIS applications, such as Quantum 
GIS, to directly access the network database for editing and data processing. 
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The network editor for POLARIS has been developed over the past 10 years and 
was modified to accommodate this project. In particular, the ability to import 
GTFS feeds and matching them with the POLARIS street network is a new 
feature that enabled much of the flexibility needed for this project. 

The network is quite sizable. Currently, the street network is represented 
with 32,000 street segments, most of which are bi-directional. Expressed in 
directional connectivity, the street consists of 57,000 street segments between 
intersections. Table 2-1 illustrates the various network elements. 

Figure 2-1  Screenshot of POLARIS Network Editor displaying CMA network used in POLARIS
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The network was originally developed by the Chicago Metropolitan Agency for 
Planning and has been enhanced over the past 10 years to refine the Chicago 
Business District and to align roadways more precisely with satellite imagery. 
Although the Chicago Business District is now modeled with nearly all existing 
streets, most of the network is a planning network that covers only major 
arterials and some major streets in the outlying areas. This is still perfectly valid 
as long as there is a complete and accurate road network model where any of 
the transit vehicles in the area drive. The network has been edited so that all 
transit routes are now properly projecting onto the road network. The network, 
in its current state, provides all relevant details on 54,700 miles of roads (speed 
limits, signals, numbers of lanes, and more) and covers approximately 10,000 
square miles at reasonable accuracy.

Table 2-1  Major POLARIS Network Tables for Chicago Model 

Network
Component Records Description

Link Table ~57,000
These street links are the primary elements of the road network and 
provide fields for speed limits, capacities, vehicle types, link types, use 
codes, geometries, and more. 

Node Table ~19,200
Nodes are intersections for all practical purposes. Each link starts and 
ends at one of these nodes, and other parameters such as traffic signal 
phasing and timing are also associated with these nodes. 

Location 
Table ~171,000

Locations are the equivalent of street addresses where activities are 
performed by each individual. They are representative, and all 30 million 
daily trips in the Chicago metropolitan area start and end at these  
specific locations. 

Connectivity 
Table ~129,000 Connectivity records describe the allowed movements at each  

intersection 

Signal Table ~8,000 Table with an entry for every traffic signal system in the metropolitan 
area (equivalent to the number of intersections with traffic signals) 

Transit Link 
Table ~38,000 Each transit link has been imported from GTFS for the region and  

represents a connection between a pair of transit stops 
Transit Stops 

Table ~35,000 All transit stops being used on a specific day, also loaded from the GTFS 
of the three transit agencies in the region. 

Transit Walk 
Links ~65,100

In addition to using transit vehicles between stops and stations, travelers 
must also be able to walk from their origins and destinations to the  
various stops and need to be able to use the walk network to make  
connections between stops when transferring between routes 
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Transit Network Sources 
The transit network in POLARIS is based on GTFS feeds, the mechanism used by 
transit agencies to send their scheduling information to Google. The advantage 
of using these feeds is that the data are continuously prepared and submitted 
to Google on an ongoing basis, and basic qualifications ensure that the data 
feeds are reasonably accurate most of the time. The GTFS feeds are, in essence, 
compressed archives in .zip format that are place on a specific web server 
owned by the transit agency, which are, in turn, regularly imported by Google to 
be used for their routing services. The static feeds contain all relevant schedule 
information as well as stop locations and other important metadata. Each feed 
file is fully self-contained. 

The .zip archive contains entries describing all stop locations, scheduled trips, 
departure and arrival times at all stops, routes, route variations, daily schedules 
and exceptions, and more. These feed files are examined by our servers at 
least once per day and are captured and stored when their contents change. All 

Figure 2-2  Illustration of fidelity of POLARIS network (shown for Chicago business district 
and surrounding areas) 
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transit agencies, specifically Metra, Pace, and CTA, publish this information in 
respective web server locations, although the frequency of updates varies by 
agencies depending on their individual implementation of this service. 

The acquisition of feed files from Metra started in October 2016, and there have 
been more than 300 newly-posted feed files since then. It is notable that Metra 
posts new versions of its GTFS feeds quite frequently on subsequent days. More 
commonly, though, their files are posted on a weekly schedule. This indicates 
that updates to their expected schedules are included on a rather frequent 
basis. The feeds from CTA and Pace are posted less frequently; the number of 
CTA posts since July 2016 is less than 60 at roughly 2–3 weeks intervals. Even 
with the CTA feed files, it occurs occasionally that a new feed file is posted on 
subsequent days, probably to fix errors in the data provided in the previous feed 
file. Pace has also posted about 60 feed files since April 2016 when this project 
started capturing these files; these feed files are updated every 2–4 weeks. 

There were a few limitations to using this data that were not originally obvious, 
although some were not too serious. 

The exact specifications contained in the data files are very concise, but 
only within each individual archive file. The files contain the locations of all 
reference transit stops in form of longitudes and latitudes and the exact arrival 
and departure times for every transit trip. But the next feed file may have 
updated information—for example, modified longitude and latitude entries for 
transit stops. These changes may be significant—for example, Pace making an 
effort to correct its stop locations over the past years, leading in some cases 
to significant movements of otherwise static objects (a few stops moving by 
several hundred meters, for example). 

In interviews with the transit agencies, it also became clear that their 
preparation of GTFS feed files is not 100% automated and that some data errors 
make their ways into these files. There are also a number of interpretations 
and assumptions that do not hold up under scrutiny. For example, GTFS feed 
files posted by Pace, according to requirements established by Google, have 
to be posted one week before the schedules go into effect. Based on that 
requirement, a feed file posted on a given day may not have any trips scheduled 
for the first day after posting and guarantees correctness only for six days after 
posting. One example of this issue is the April 1, 2017, posting of a GTFS feed file 
by Pace, which when queried, did not show any trips on April 1. This leads to a 
certain “fuzziness” of validity of entries over time, which has to be considered 
when using this data. 

A closely-related issue is that any given GTFS feed file may contain the specifics 
of a trip scheduled in a few weeks. The internal structures to identify service 
calendars and calendar exceptions are very concise and will schedule trips with 
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specific trip IDs on a particular route for these future dates. Nevertheless, before 
this scheduled date is encountered, one or more new feed files are potentially 
posted by the transit agency. The trip identifiers used by these subsequent 
feed files may be consistent within each file but not across multiple files. This 
means that a particular trip appears to be identified by different IDs when using 
subsequent feeds, and there is uncertainty with regards to whether the new 
feed file is correct or whether the old feed file should be authoritative (mostly 
because feed files are posted by the agencies on their websites, and there is 
no indication on whether Google detects their presence and starts using this 
information). 

This issue becomes a problem when dealing with dynamic GTFS feeds and 
correlating them properly to the static feeds (more about dynamic feeds is 
provided in a later section). The dynamic feeds, providing real-time transit 
vehicle locations and schedule adherence every 30 seconds throughout the day, 
are a powerful data source for examining delays and performance statistics, 
but IDs used in these dynamic files to identify specific trips may be inconsistent 
between two or more static GTFS files with which they should correspond, and 
there are additional issues because the dynamic feeds are typically provided 
not by the transit agencies themselves but rather by a third party. There is no 
information when the third party reads static GTFS feeds and bases its real-time 
feeds on those identifiers. 

In summary, although the format of static GTFS files is very concise and is 
checked for quality, the effect of posting only a single file at a time removes the 
needed historical perspective on these feeds, and much of the changes over 
time need to be reconstructed as best as possible before the data can be used. 

The servers used by the team capture these data as well as the dynamic GTFS 
feeds from Pace and CTA and reconstruct the historical procession of the feeds. 
This mechanism allows for a software library that can be used to extract all 
relevant transit data for a specific date from the overall set of source feeds, 
which is needed to populate the transit model within a POLARIS network. This is 
an important detail that should be clearly understood: the GTFS representation 
of transit data covers at the very least a time frame of a few weeks, whereas 
the representation in POLARIS must be for a specific day extracted from this 
superset of data. This is a common approach for large system simulations, 
especially when dealing with large regional models. 

Transit Network in POLARIS 
To import transit data from GTFS feeds, the first decision is to select a specific 
day for which to load data. This day should be chosen to be representative of 
a typical working day, such as a Wednesday not enveloped by holidays. It also 
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makes sense to consider seasonal variations, and the most representative 
transit operations typically were in the early fall of each year. 

The tools developed as part of this project allow reading these data considering 
a multitude of GTFS feed files and automatically selecting the most recent list 
of transit stops, routes, trips, and individual schedules. The data also were 
merged from all feed files of all agencies before doing so to create a network 
representation that was as complete as possible. 

Because transit stops may be defined differently in subsequent feed files (e.g., 
slight location or feature changes), only stops used by any of the day’s trips were 
loaded. This was still a significant number—approximately 35,000 stops in the 
Chicago metropolitan area. 

GTFS stops have well-defined identifiers used in the list of trips and the 
departure schedules to identify these locations and in which order they are 
traversed by transit vehicles. The stops are located at specific longitudes 
and latitudes, but their spatial relationship to the POLARIS network was 
not explicitly known. A special matching application was developed and is 
documented in great detail later. The matching application compared the 
location of transit stops with the roads in POLARIS and decided on their location 
along the street network based on spatial considerations and the succession 
of stops served on the many trips contained in the feeds. This correlation is 
important, because performance of buses on the road network may lead to 
delays, and travelers will have to find their path through both the transit and the 
street network with a combination of buses, trains, and walking. 

For the purpose of finding a path through the network, all GTFS trips were 
evaluated to determine which pairs of stops are being served by each. The 350 
routes in the Chicago area have around 2,300 different sequences of stops that 
are being served in succession. Each route has usually at least two sequences 
for the opposing travel directions, but there are many variations created by 
areas served only by a subset of trips, different start and end points, express 
buses and routes skipping otherwise successive stops, and so on. From the 
need for routing passengers through the network, any pair of stops that may 
be directly connected by at least one route was created as a transit link and 
supplemented with regard to all routes and arrival and departure schedules 
extracted from the GTFS feed for the stop. The process resulted in about 38,000 
unique transit links. As noted, the exact succession of streets through which 
the vehicles pass between these stops was needed to determine interaction 
with other vehicles, but the transit link table is more abstract and does not care 
about the exact path of vehicles in between; describe are only the arrival and 
departure information that can be used to connect from one stop to any of its 
neighbors. 
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From a routing perspective, all travelers start their trips at street address or 
activity locations in the POLARIS concept. Thus, a transit trip always begins 
with a walk segment, although there may be driving involved for park-and-
ride passengers. Walking is also required for most transfers between the many 
transit routes available to travelers. Specific stops, especially when serviced 
by different transit agencies, are rarely used by more than one route. Thus, a 
passenger must walk along the POLARIS street network to make connections. 
This is a much-improved alternative to having passengers move on straight 
lines between possible transfer stops, because it considers the topology of 
the underlying network. A simple example would be the location of two stops 
that are located on the two sides of a freeway. A person cannot freely walk 
across the traffic in this case and would have to use bridges or traffic signals 
at intersections to do so. The sometimes subtle differences caused by having 
to walk realistically across the street network to make connections greatly 
improves the predictive ability of POLARIS with regard to what transit routes a 
passenger will chose to serve his or her needs. 

The supply model, meaning the network resources and transit schedules, 
is blind with regard to the population served. The population varies widely 
with socio-economic characteristics, employment opportunities, zoning, and 
land use; these are all properties of travelers in the POLARIS demand model 
that make use of the road network to move people around. But the existing 
scheduling of transit trips and the areas served by transit routes contain implicit 
knowledge of these important factors. Areas that have been determined to need 
a higher density of transit service will have that denser service schedule, and 
the travel times from stop to stop at different times of the day contain implicit 
traffic congestion information. The use of exact GTFS feeds in the traffic models 
is, therefore, a resource that is very valuable for understanding the interplay at a 
level that POLARIS deals with. 

The transit system in Chicago is an extensive operation covering a very large 
area. Pace covers the largest transit operation by area in the U.S., although 
not in passenger volume. Commuter rail operations provide transportation to 
many of the outlying areas and is especially important for effective movement 
of large numbers of park-and-ride passengers.  In the region, transit travelers 
make approximately 2.7 million daily transit trips; the total number of trips, 
including regular vehicular traffic, is close to 30 million, with a population of 
about 9 million living in this area. Given the importance of transit operations 
and especially the congestion issues involved with moving large numbers of 
people in and out of the business district on a daily basis requires a reliable 
and resilient transit operation. Incidents may happen anywhere in the region 
but will likely have their largest impact in the business district or in the large 
surrounding suburban areas. 
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Real-Time Transit Feeds 
The project team captured real-time data from the transit agencies, with the 
exception of Metra, where real-time data were not readily available and would 
be less significant in a transportation systems model due to the fact that rail 
schedules do not normally influence traffic on the road network and vice versa. 

The real-time data are generally unfiltered, as shown in Figure 2-4, which shows 
the traces of buses serving Pace route 208. The data were filtered to show which 
data points fall into the vicinity of where this route operates, resulting in the 
green set of points. There are many reasons for these messy traces, because 
data are captured indiscriminately and buses may be en route to start servicing 
route 208  or may have ended servicing that route and are on the way to the next 
run. On some days, there may have been detours encountered, and there is the 
possibility that the trip being serviced by the bus was not properly coded to the 
vehicle, leading to data that should apply to a different route by error. 

Figure 2-3  Density of transit network at various scales in Chicago metropolitan area 
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This route also exemplifies the challenges for capturing, processing, and 
referencing real-time data for bus routes. A typical route will make extra loops, 
returning to the main trunk after making a few stops. The buses may also drive 
in small and larger loops—for example, using ramps to enter expressways. 
Algorithms that filter the data points cannot rely on interpreting subsequent 
locations based on the time elapsed, because samples are usually taken only 
in 30-second intervals, which means that a bus may have traveled a significant 
distance since the last sample was taken. 

Before discussing data quality issues and processing algorithms, a discussion 
on available data sources in the Chicago region is presented that includes the 
issues and methodologies for capturing these data for use with this project. 

Real-time data comes from three sources. For Pace, the team had access to 
the real-time GTFS feed that Pace provides to Google for transmitting current 
transit states around the clock. For CTA trains (L-trains) and buses, two separate 
custom systems were accessed to extract the relevant data. 

Pace Real-Time GTFS Feed 
The real-time feed that Pace uses to transmit data to Google also was available 
to the project team. It comes out of a system operated by a Pace subcontractor 
and is not directly under the control of Pace planners or operators. The data 
are posted using protocol buffers, as a file format developed and maintained 
by Google to transmit data in a consistent format in an efficient, compressed, 
and easy manner, including error control and detection, and more. From a user 
perspective, it is a file  posted on a specific web server and is updated on a 

Figure 2-4  Example of real-time data for buses servicing Route 208 on Pace network 
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regular basis. For Pace, the file is re-posted with fresh data every 30 seconds. 
These files are reasonably small considering the amount of information 
contained in them. Each file provides the current location of every bus Pace 
operates as well as projected arrival and departure times for a series of 
upcoming stops for every trip currently being serviced. This description is very 
general, and there are issues that limit whether the data are current, what data 
may be missing for technical reasons, and so on. Similar to the static GTFS 
feeds, each file is self-contained, and data from a previously posted file are not 
needed to interpret the content of the next feed file. These feed files vary in 
size but hold data for hundreds of vehicles and trips currently operating on the 
network. Each file is usually a few hundred kilobytes and may contain data for 
500 concurrent vehicles. 

The files are being captured every 30 seconds, amounting to 120 files per hour 
or 2880 per day. The data take up a little less than 1 Gigabyte per day, which is 
not a problem with regard to storage capacity on modern computer systems but 
requires a significant amount of computing capacity for data extraction, data 
cleaning, data compression, and other data-related tasks. The raw data in the 
protocol buffer files are meant to support the display of current locations and 
the ability to display projected arrival and departure times within Google Maps. 
When being used for data mining, the context for these data points needs to be 
more closely established, bad data need to be identified and filtered out, and 
errors in the data stream need to be recovered from. The data points also need 
to be correlated to all the other data collected for the road network, including 
matching the data to the road networks used in the models. 

As outlined earlier, each protocol buffer file is completely self-contained and can 
be used without the need for preceding data files. Each data file is timestamped 
with regard to the time it was created, which may be different from the time the 
file was downloaded. To not miss any data files, the download operations were 
oversampled, with a download every 25 seconds or so. As a first action, the time 
stamp was read for the only downloaded file, and the file was discarded if it was 
identical to the one previously downloaded. This avoided data duplication on 
the systems and ensured that no data files were missed due to timing issues. 

The time stamp for each data file identifies the time at which the data file was 
assembled. The data contained in the file is a collection of GPS locations of 
all transit vehicles that may have been acquired recently but not at this exact 
time. First, the vehicle captures the GPS coordinates, then it transmits them 
by some wireless method to a central system, which eventually assembles the 
records and posts them as a collection of data points in the protocol buffer. The 
import thing is that the exact time stamp for each vehicle location is retained 
throughout the process and is part of that vehicle record in the protocol buffer. 
This leads to situations where a vehicle location may have occurred a few 
minutes before but no new records have been received by the central service. 
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Thus, the next protocol buffer contains a time stamp for the vehicle location 
that has not been updated in this feed file compared to the last feed file but 
because each capture time of a GPS location is known, this does not pose a data 
interpretation problem. 

The project team may not use all data contained in the protocol buffer files. Of 
specific interest are performance data that can be extracted from these files. At 
a minimum are the following data fields extracted for each vehicle: 

• Vehicle identifier
• Trip identifier for trip being serviced by this vehicle
• Time of when GPS location was captured at 1-second precision
• Longitude and latitude of vehicle at that time

In addition to vehicle positions, there are sizable trip data entries contained in 
these files as well. The trip data entries provide the following information on a 
per-vehicle basis (it should be noted that there may be more than one vehicle 
serving a trip at any given time, e.g., to increase capacity, so the trip data table 
is on a per vehicle basis):

• Route identifier
• Trip identifier
• Vehicle identifier
• Date on which trip was scheduled to depart
• Scheduled departure time on this date
• Time table for arrivals and departures at nearby stops (preceding and

future)

These data entries provide the key for correlating the real-time data to the static 
GTFS feeds, although these matches are not always perfect. For example, the 
Trip ID may reference an older static GTFS feed depending on when and how 
the newest feed file was posted and downloaded by the various servers in the 
communication and processing framework. It should be noted that the above 
data are sufficient for Google Maps to provide identifying data to users on their 
website. 

The actual bulk of the payload in a protocol buffer file is the time table of 
arrivals and departures at nearby stops. This is rarely a list of all stops serviced 
by the vehicle along its trip, and given that these data must be transmitted 
every 30 seconds, it makes little sense to transmit projections for the entire trip. 
However, the table is meant to be used in conjunction with the static GTFS feed, 
which has the schedule for all stops of this trip. This means that the projected 
arrival times in the real-time feed are meant to supplement the static schedule. 
For example, if a bus is known to be 10 minutes late at the next upcoming stop, 
it will also be assumed to be late at all later stops by that amount unless an 
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entry is found in the real-time data that resets projections for upcoming stops to 
their defaults. 

The real-time feed is also meant to provide the means for a transit operator 
to provide information about unscheduled trips to Google. That means that a 
vehicle and trip found in the real-time feed that does not correlate to a statically 
scheduled trip may be an extra service being run by the agency, in which case 
the scheduled arrival and departure times in the dynamic stop list can be used 
by Google for routing passengers. This is where a few data consistency issues 
originate. For example, if a Trip ID is not found in a static GTFS feed, Google 
would not consider this to be a data quality issue but simply use the real-
time data. If the same would be operating at the same time under a different 
Trip ID, it would not matter much for Google or transit passengers because 
duplicate routing options may not be something that passengers would notice. 
From a perspective of using these data for data mining purposes, such as 
extracting performance data, these data consistency issues become much more 
important. 

Other data consistency issues have been identified in the static and real-time 
GTFS feeds. For example, a static GTFS file may schedule trip to depart at 25:34 
on a specific date. This makes sense because this trip serves passengers of 
that day but happens to be scheduled to leave after midnight. The static GTFS 
feeds for the Chicago region occasionally schedule trips departing as late as 
27:00 on any given day. Also, the arrival and departure time of trips originating 
before midnight may extend to the next day and are provided in 24-hour format 
beyond midnight. The real-time feeds do not use times beyond 23:59:59. From 
a perspective of time passing by second by second, that makes sense. But a trip 
scheduled for a specific date may be scheduled to leave at 01:34 am, making it 
difficult to understand whether this corresponds to the same day’s schedule or 
the next day’s schedule. 

The real-time GTFS feeds have the arrival and departure time lists for each 
of the trip entries. This list is somewhat over-specified because there are six 
entries in the table: 

•	 Sequence number of stop on trip
•	 Stop ID for stop
•	 Projected arrival time
•	 Projected arrival delay
•	 Projected departure time
•	 Projected departure delay

The real-time GTFS files for Pace do not provide all these values for every 
record. Typically, the departure time and departure delay are given but the 
arrival time and arrival delay are not. This is good enough in most cases, but 
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there are times when the entries also contain a record for the arrival time and 
arrival delay. In those cases, the Pace feed provides the information in two 
records rather than one (specific arrival and departure times and delays in the 
four data fields). Instead, the first record has the arrival time and delay, and 
the second record has the departure time and delay. To do this in two records, 
whatever software generates the data increases the sequence number for 
the second record and duplicates the stop identifier. This means that for all 
upcoming stops, the sequence number is increased by one and is incorrect 
according to the GTFS specifications published by Google. In some cases, record 
duplication occurs more often than once, forcing the sequence to be off by 2 or 
even 3. The feed data can be repaired using some external logic if the static feed 
is known. But the issue illustrates the complexities of providing a real-time data 
feed and the level of complexities to be understood when processing the data to 
extract meta information such as performance data. 

CTA Real-Time Data Feeds 
CTA operates its own services for real-time data service—the CTA Train Tracker 
and the CTA Bus Tracker. Both services provide access to location information 
in a custom format that is published by the agency. The data are very different 
for CTA trains, so the project team captured data for CTA trains and buses using 
separate mechanisms. 

For CTA trains, the data were captured every 30 seconds. The resulting data 
file was organized by line (route), and within each line there is an entry for each 
run currently operating. Each run was identified by timestamp, longitude, and 
latitude, and the information contains other useful meta data such as the Stop 
ID, Stop name, arrival time of and at the next station, destination overhead 
display value, compass heading, and so on. 

CTA Bus Tracker data are collected every 60 seconds, and each file covers 
hundreds of location records for CTA buses. Each entry consists of a number of 
data fields that can be used to extract performance data when examined over 
time: 

• Route identifier
• Time stamp for when the data was collected
• Vehicle identifier
• Longitude and latitude
• Final destination of this trip
• Heading of vehicle
• Trip information
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The records do not contain a reference to the static GTFS feed with regard to 
trips, so matching the vehicles with scheduled trips is a larger problem than 
with the other data source used for this project. 

Data Analysis Tools, Case Configuration, 
Simulations, and Visualizations 
The massive amount of data from this project, and especially the results from the 
simulations, were difficult to validate and debug. For this purpose, visualizations 
were developed that allow tracking down problems in the software and to 
illustrate the movements of transit vehicles throughout the simulation. 

The datasets from POLARIS, using the individual transit passengers and their use 
of transit vehicles throughout the day, were aggregated into passenger counts on 
vehicles that can be compared with APC data from the transit agencies. The basis 
for these visualizations is an Open Source software application, Quantum GIS, 
which was chosen because of its compatibility with the POLARIS Network Editor 
and the network database maintained for this project. 

Figure 2-5  Screenshot of visualization showing load on simulated transit vehicles in northern part of 
Chicago metropolitan region
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The scenarios analyzed had to be configured for POLARIS using both the 
POLARIS Network Editor and Quantum GIS. Within the network editor, an area 
can be selected dynamically to determine the streets and rail lines affected 
by the scenario. The software then disables traffic on these network links 
and determines the associated stops. An analysis of the routes using parts 
of the unavailable network is then performed to determine the segments of 
bus and rail routes that are artificially terminated in the vicinity of the closed 
area. Incoming route segments are considered to be serviceable, but outgoing 
segments are removed from the simulation. 

This leads to a complex modification of the transit network in the vicinity of 
the transit disruption, specifically for the duration of the event. In the case of 
the Jefferson Park scenario, a significant number of trips is interrupted, and 
passengers are stranded at the location within the affected area (at the onset of 
the event) or in the surrounding area (if arriving after the onset of the event). It is 
realistic to assume that passengers arriving on buses will terminate their current 
trips and search for new available options using the transit router. This includes 
now-significant walking distances to stops not affected by the scenario. The 
still-available transit stops are located on a perimeter outside the affected area, 
and the software analyzes the existing routes to prevent them to terminate on 
streets that are affected. This leaves a significant number of bus stops available, 
most of which are not immediately suitable to re-enter the transit system in a 
meaningful way. For example, a rarely-served bus stop on a close-by street is 
useless for the purpose of continuing a trip in the immediate future. 

In Figure 2-6, these issues become more obvious. As shown, in the center of 
the area is the Jefferson Park Transit Station, which is served by Pace, Bus, 
and Metra. The green stops along the road network (at a radius of about one 
mile in this scenario) are locations where current transit trips are immediately 
terminated. Passenger will have to leave the buses and continue their trips 
by walking along the streets to a suitable connecting stop or station. Some 
passengers may be able to stay on the buses as they use the road network 
to leave the area on non-scheduled paths, but that is not significant. Some 
passengers will change their travel plans, and others will use taxis or ride shares 
or other means of transportation. This particular configuration step deals with 
the changes to the transit system and resources and not with the demand. 
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Figure 2-6  Illustration of scenario configuration in vicinity of Jefferson Park 
showing simulation methodology for transit disruptions in specific area  
(actual bus stops and rail stations)

To model an active emergency response by transit agencies, the problem needs 
to be configured with a number of suitable ad hoc point-to-point bus trips 
that move an optimum number of stranded passengers across the affected 
area. The constraint is the number of buses available to do so, but to find the 
optimum set of point-to-point trips across the area given the limited number of 
buses available, the software determines a soft criteria of “suitability” of stops 
in the perimeter to serve as start and end points for such ad hoc trips. To do 
so, each stop on the unaffected street network is evaluated for its proximity 
to a maximum number of routes. The top locations are shown in Figure 2-6, 
colored by their local attractiveness within a reasonable walking distance. As 
an optimum location within a certain distance from each stop within a cluster 
of stops is found, it is selected as a candidate for the origin and/or destination 
for an ad hoc trip. The algorithm selects the stops marked by stars in the figure, 
colored by their local attractiveness. 
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Ultimately, the number of these origins and destinations is too large to be 
served by ad hoc bus trips, but the software creates a larger number of 
candidate ad hoc routes on the fly anyway using an internal router within the 
network editor. This router uses only network segments that are still available 
despite the emergency, and routes paths randomly around the affected area. 
This may result in a set of 100 or more potential ad hoc point-to-point routes, 
which are candidates for optimization with the optimization model. They will be 
chosen based on constraints such as the number of buses available in the area 
or changes in passenger volume. 

The process can be illustrated using a set of figures, which are part of a 
demonstration video that was prepared to illustrate the methodology to the 
operators and stakeholders in the area. The illustrations are more abstract than 
the above tools setting up the scenario but are more suitable to illustrate the 
algorithms and their individual steps. 

At the onset of the scenario, the transit system is operating under normal 
day conditions. As simulation progresses forward in time (or as the incident 
develops in the real world), a specific area is affected and disrupts travelers in 
the vicinity of the event. Buses caught in the event are shown in red, although 
the schematic is not meant to provide a very real-world understanding of the 
details. From a simulation perspective, the red buses are caught up in the 
disruption and cease to operate. At this point, passengers are stranded at the 
next stop at which the vehicle would stop anyway; they accumulate on the 
street network and may start walking to alternative connection points, either 
informed by announcements by the transit agencies, but more likely doing 
so based on information gathered privately from cell phones and personal 

Figure 2-7  Jefferson Park scenario—affected area on normal day
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communication. Although the immediate and total discontinuation of service 
in the area would happen more gradually in the real world and some buses 
will be able to continue their trips, the overall effect is a build-up of stranded 
travelers and others trying to leave the area.

Figure 2-8  Jefferson Park scenario—onset of disruption of transit 

At this point, operations are under the assumption that automatic passenger 
counters and fare card data could be available in real time to the transit 
operator dispatch centers and could be fed immediately to a rather fast-running 
short-term demand forecasting model (developed by GMU). The data are, in 
reality, collected overnight by downloading it from buses or accessing the fare 
card provider’s databases. Thus, the automatic detection of short-term demand 
changes cannot yet be truly handled in real time, but the accumulation of 
stranded passengers in the transit system based on their location at the time of 
the disruption could be determined by observing the actual counts with normal 
data counts and the corresponding statistical analysis.
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Figure 2-9  Jefferson Park scenario—short-term demand analysis 

A point of caution—the original concept was using Bayesian statistics to 
determine the succession of changes in boardings and alightings at the stop by 
stop level throughout the region, but the total number of stops, routes, trips, 
and passengers throughout the day is too computationally-intensive to be 
achieved within a meaningful time. Thus, the process is based on aggregate 
statistics by travel analysis zone, which is too broad for fine-grained analysis at 
this time. By knowing the general location of incident in advance, the process 
can be limited to a smaller region, but it remains important to understand that 
the trips of travelers going through a central location such as Jefferson Park 
has ultimately large consequences for connectivity to far-away trip origins and 
destinations. 

While the event unfolds and more and more people are stranded in the 
area, transit agencies will start organizing a response based on incomplete 
assessment of the scope but generally based on local observations by police 
and other officials. Traffic counters are not usually available in urban areas, 
but the short-term demand model would observe the change in passenger 
boardings and alightings, providing meaningful input to the transit agency 
responses. Coordination among the transit agencies may start at this time, and 
the most likely response would consist of assessing the availability of buses and 
drivers at the various depots and dispatchers identifying the stranded buses 
to determine if they can be used to support an active response. These actions 
would be imperfect but would take place. The problem is that the dispatchers 
would not know where to send the buses unless the accumulation of stranded 
passengers was easily observed or reported. Thus, the short-term demand 
model based on real-time knowledge of passenger location would be extremely 
helpful.
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In project simulations, POLARIS was used as a real-world stand-in to determine the 
effects of evacuation strategies being deployed. The short-term demand model 
informs POLARIS of the scope of the disruption, and the process of determining 
remaining transit assets begins. This includes the determination of suitable point-
to-point routes using the scarce remaining buses available to responders and the 
assessment of their potential routes on the perimeter of the incident. 

At this point, it is expected that travelers will make their own decisions about how 
they will continue their trips. Some will wait for the system to become operational 
again, some will use alternate transportation, and some will depend on buses 
made available as part of the regions emergency response. Communication is a 
key component at this time, letting passengers know what their options are and 
selecting the optimum use of the remaining bus fleet in the area.

Figure 2-10  Jefferson Park scenario—initial transit agency response and 
short-term demand estimation 

Figure 2-11  Jefferson Park scenario—passenger response to transit disruption 
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The emergency response, as chosen by the operators, will be hindered by a 
developing congestion on the road network. Depending on the cause of the 
incident, vehicular traffic may increase dramatically and may cause further 
difficulties with deploying the remaining fleet of buses. POLARIS has been modified 
to have the buses flow in the actual traffic on the roads, which is especially 
important on these ad hoc bus routes that are being evaluated and optimized.

Figure 2-12  Jefferson Park scenario—optimization of resource allocation 

In the simulated world, all these events happen in a fairly rigorous manner, 
whereas events unfold differently in the real world. The initial choice of ad hoc 
bus routes may have been inefficient or caused by statistical spikes, or the 
traveler’s behaviors may have changed. The large survey undertaking by the 
project team that led to the underlying estimates on how people react to these 
disrupts was conducted at 100 different transit stops and stations, and although 
vetted to be statistically relevant, suffered from the fact that people react 
differently in real life than they would when asked about their likely responses in 
a survey. 

Therefore, it was important to keep the feedback loop going over multiple time 
periods and on a rolling horizon. The movement of passengers as they use the 
ad hoc fleet of buses implicitly conveys information on how they would respond 
compared to the initial assumptions about the demand. At this point in the 
theoretically-optimized response, the lack of real-time data and the absence of 
an observable response of an actual population becomes very theoretical and 
may be significantly different from on-the-ground observations. The limited 
knowledge provided by this approach is better than the absence of knowledge 
altogether, but it demonstrates that the decisions of emergency responders 
cannot be meaningfully replaced by any fully automated system. 
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After an initial time period, the active response may also be easier to control 
by human decision- making rather than automated tools. Eventually, on-the-
ground observations and the ability of people to look out for themselves will 
diminish the need for an automated tool. 

One frequent issue is the need for responders to deal with special-needs 
populations in such scenarios. The project team could not find meaningful 
data sources to integrate such a level of detail into the simulations. As noted, 
the use of models and simulations is limited under these circumstances and 
mostly serve as an aid for first responders to make better decisions. 

The final figure in this series illustrates the regional effect of transit service 
disruptions. This is a particular problem when rail commuter routes are 
affected, as they tend to be significantly delayed when encountering service 
disruptions. 

Figure 2-13  Jefferson Park scenario—feedback cycle over successive rolling 
horizon time intervals 
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Figure 2-14  Jefferson Park scenario—aggregate short-term demand forecasting 
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Stated-Preference Intercept Survey 
of Transit-Rider Response to Service 
Disruptions3  
A web-based intercept survey was designed and implemented to capture 
the response of transit riders in the Chicago metropolitan area to a variety of 
service disruptions. Current transit riders were intercepted in the field from 
November 2017 through January 2018 according to a sampling plan based on 
local ridership information to gain a representative sample for analysis. Each 
participant completed a questionnaire regarding the intercepted trip and 
demographic and travel experience information. The survey included a series 
of stated-preference responses where the current trip was randomly disrupted 
and alternative travel modes were proposed with service characteristics 
randomly altered from a baseline scenario. This was designed to understand 
individual trade-offs between various mode alternatives and travel plan 
modification strategies under a variety of scenarios. Altogether, 659 transit 
riders gave responses to 2,626 different disruption scenarios. In general, a 
plurality of riders (49%) chooses to continue using transit, either waiting for 
service restoration or using agency-provided shuttle service, although at a 
decreasing rate as the travel delay increases. Fewer riders, approximately 15%, 
choose to alter their activity patterns altogether, and 26% would alter their 
travel to use either a taxi or an alternative Transportation Network Company 
(TNC). Having a more detailed understanding of the behavior of riders under 
various disruption scenarios should allow transit agencies to better prepare for 
service recovery and restoration after and during local disruptions. 

Introduction 
The Chicago metropolitan area is one of the largest and most dense 
concentrations of people, industry, and commerce in the U.S. The Chicago area 
is also vulnerable to many categories of hazards, including flooding, tornadoes, 
blizzards, and man-made emergencies. As a transportation hub, it is imperative 
that the region be prepared to recover quickly from these various hazards. 
Transportation networks are a critical resource in disaster management and 
recovery operations. A key component of understanding how transportation 

3  Authored by Joshua Auld, Ömer Verbas, Hubert Ley, UC/Argonne; Nima Golshani, UIC; and Josianne 
Bechara, Angela Fontes, National Opinion Research Center. This work was performed under an FTA 
grant awarded to the University of Chicago in December 2016 (IL-26-7015-01 – Coordinated Transit 
Response Planning). The authors acknowledge Pace and Metra as representative stakeholders for 
Chicago's transit operators, providing much of their operating experience and rich data resources 
to the project. In addition, CTA generously provided access to its own data sources and supported 
the project team by providing access to its facilities for the survey and reviewing the survey design 
during the planning stage. Thanks are offered to IDOT for its input and to other municipal, local, 
regional, and national stakeholders for their willingness to participate.



FEDERAL TRANSIT ADMINISTRATION 	 46

SECTION  | 3 

authorities can best plan for and manage a transportation system to help the 
region be ready to respond and recover from emergency situations for many 
hazards lies in understanding traveler behavior. It is imperative to understand 
how travelers, specifically transit users, respond to emergencies to understand 
the requirements for any response and recovery effort. 

Survey data were collected that focused on the regional transit network in the 
Chicago metropolitan area—Pace (suburban bus operator), Metra (commuter 
rail), and Chicago Transit Authority (CTA) (urban rail and bus operator). 
Passengers were intercepted at 100 separate stops/stations belonging to 
each of the three transit operators to direct travelers to a custom web-based 
online survey. The web-based survey captured background information on 
participant's general travel behavior and transit system usage, posed specific 
questions regarding their travel plans regarding the trip during which they were 
intercepted, and captured hypothetical behaviors and choices in response to 
a variety of possible emergency scenarios occurring along their travel route. 
This information was used to develop computational models simulating and 
evaluating how the Chicago area transit systems operate under a number of 
hazard conditions. The outcome of this research was used with a decision 
support tool that will allow for the development and evaluation of emergency 
response plans by transit operators based on an understanding of the 
responses of travelers to disruptions in their systems. 

Literature Review 
Two types of disruption in transit networks are generally discussed in the 
literature. The first group corresponds to the pre-planned disruptions that 
may occur due to pre-planned activities such as maintenance and labor strikes 
(Pnevmatikou et al., 2015; van Exel and Rietveld, 2009; Yap  et al., 2018). This 
study focused on the second group, which deals with unplanned disruptions 
due to abnormal events such as severe weather conditions, accidents, or 
terrorist attacks. Generally, transit system restoration and managing the 
situation is performed by finding the best alternative for the out-of-service 
mode without considering any passenger behavioral responses to the 
disruption. Failing to account for passenger behavior and perceptions may lead 
to selecting a management strategy that is far from optimal (Currie and Muir, 
2017); therefore, some studies started to collect data and estimate behavioral 
models for such events. A thorough review of recent literature regarding 
surveys of transit rider response to disruptions was recently conducted by Lin 
et al. (2016), where several limitations of existing research and data collection 
efforts into this topic were observed, the most significant being the lack of 
consideration for different disruption types and differentiation between pre-
trip and en-route response. Some of these limitations were addressed in the 
implementation of a survey by the same authors (Lin et al., 2018) through the 
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use of a combined revealed preference and stated-preference design where the 
disruption type and characteristics could be varied. 

One of the first studies focusing on people’s behavioral response to transit 
disruption (Tsuchiya et al., 2007) designed a support system for passengers 
using a revealed preference (RP) dataset. The data were collected from 
all disruptions in the rail network over an 18-month period in Japan. The 
proposed system considers passenger perceptions towards information 
and recommended the optimal decision (e.g., change route, wait for service 
restoration) to them. Murray-Tuite et al. (2014) conducted an RP survey five 
months after a deadly transit accident in Washington, DC. and investigated its 
long-term effects on passenger behavior. Respondents were asked to indicate 
what changes they made to their transit trips (no change, change seating 
location, change mode, change both mode and seating location) after the 
accident; in total, 10% changed their mode of travel and 17% changed their 
seating location in the same train. 

To avoid lack of variation in choice experiments, some researchers have 
conducted stated preference (SP) surveys in which respondents indicate their 
decisions when faced with hypothetical scenarios. For instance, Bachok (2008) 
conducted an SP survey from transit riders in Klang Valley, Malaysia to estimate 
mode choice behavior in the case of train derailment. In this study, respondents 
were asked to select among alternatives of other trains, shuttle bus, private 
vehicles, and wait for restoration of the rail system in case of hypothetical 
scenarios. Fukasawa et al. (2012) analyzed the mode shift in response to 
sudden transit disruption using a dataset from an SP survey. They found higher 
frequency of shifting to other trains in cases where adequate information about 
available alternatives was provided to the passengers compared to when no 
information was given. On the other hand, Bai and Kattan (2014) conducted 
an SP survey on light rail transit users in Calgary, Canada and found that the 
majority of respondents were willing to change their mode of travel if no 
information was provided about possible time to restoring the transit system. 

Arguing that RP surveys are not able to capture a wide range of variations 
in choice scenarios (Lin et al., 2018) and SP surveys are not the exact 
representative of travel behavior (Rubin et al., 2007), some studies focus on 
combining the two methods. For instance, Teng and Liu (2015) used an RP 
survey to estimate the choice attributes of an SP survey to investigate passenger 
mode shift during a disruption in Shanghai’s urban rail system. They found 
that more than half of the respondents would use the replacement shuttle bus 
instead of other travel modes. Lin et al. (2018) conducted a combined RP-SP 
survey in Toronto to investigate passenger mode behavior in the case of subway 
disruption. The RP section corresponds to respondents’ last experience with 
such event, and the SP section presented hypothetical disruption scenarios in 
which respondents could select from a range of replacement modes or even 



	 FEDERAL TRANSIT ADMINISTRATION 	 48

SECTION  | 3 

cancel their trip. They found that providing accurate and timely information 
could help passengers select the optimal replacement mode and route. This 
survey built on the work of Lin et al. (2018), by conducting an intercept survey 
of transit riders and then basing the hypothetical stated response scenarios on 
that trip representing a wide range of disruption types, which should provide 
for more accurate estimation of the sensitivities to changes in travel times and 
costs due to disruptions. 

Regarding transit disruptions, there is also a great body of research on the 
supply side, i.e., transit disruption management. Cacchianai et al. (2014) present 
an overview for railway disturbance and disruption management. Another 
comprehensive review is provided in Ghaemi et al. (2017). Strategies to control 
randomness in transit operations date back to 1974 (Barnett, 1974). In this study, 
vehicle holding strategies are proposed to optimize the trade-off between the 
waiting times at stops/stations and the delay of riders already on board. The 
holding problem with real-time information is solved as a quadratic program 
in Eberlein et al. (2001). A more recent study revisits the holding problem, 
where the number of waiting passengers is not known beforehand (Bender 
et al., 2013). Deadheading (skipping stops) is another common strategy, and 
one of the studies on real-time deadheading is presented in Eberlein et al. 
(1998). Other real-time strategies include a combination of holding and short-
turning (Shen and Wilson, 2001). Strategies beyond holding, deadheading, and 
short-turning involve modifications of existing lines and addition of new lines 
(Kiefer et al., 2016). Another method is bus bridging, where rail passengers are 
carried between metro stations via buses (Jin et al., 2014; Kepaptsoglou and 
Karlaftis, 2009). One very important aspect in transit disruption management 
is rescheduling of crews, which increases the complexity of the problem 
(Carosi et al., 2015; Malucelli and Tresoldi, 2019). Other studies focus on the 
vulnerability of the existing transit network (Candelieri et al., 2019; Xing et al., 
2017). Finally, some studies incorporate passenger behavior explicitly (Cadarso 
et al., 2013), including information contagion (Hua and Ong, 2018). The efficient 
and successful application of many of these incident management strategies 
critically depends on accurate information regarding passenger behavior and 
response to the disruption and mitigation strategy. To this end, surveys of rider 
responses can be used to inform transit agencies and event managers with 
likely demand levels, mode shifts, etc., for a given strategy to allow for more 
optimal implementation. 

Survey Design 
To understand the response of transit riders to operational disruptions, an 
intercept-based survey of current Chicago-area transit riders was conducted. 
The survey was implemented in form of a web-based surveying platform 
accessible through a survey link and PIN distributed to respondents. It is 
similar in design to the survey of Lin et al. (2018), with the addition of using an 
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intercepted transit trip rather than a previous recalled trip as the basis for the 
stated-preference response portion of the survey. In fact, many respondents 
(~48%) completed the survey on the intercepted trip or on the same day after 
completing the trip. Over 67% of respondents completed the survey within 
two days of initial contact, so overall recall periods were short. Respondents 
were intercepted in the field at Pace bus, Metra train, and CTA bus and rail 
stations according to a sampling plan developed using daily ridership and 
boarding/alighting information from each service agency. Participants were 
screened in the field for suitability (over age 18, resident, on a transit trip), 
and if agreeing to participate were given a contact card with a unique PIN that 
identified the service, contact time, and contact stop for pre-populating the 
survey questionnaire. Respondents entering the survey link with the PIN were 
prompted to complete the details regarding the intercepted trip, including 
where they were coming from and going to preceding/following the transit trip. 
They were also asked about the locations of departure and/or arrival station(s), 
depending on where they were intercepted along the trip, and a variety of 
activity and travel characteristics regarding origin/destination (OD) activities, 
access/egress to transit, and experiences on the transit trip(s). The survey had 
four primary components, including: 

• Person and household demographic information
• Intercepted transit trip characteristics including fares, times, ride quality,

time use, etc.
• General transit and other travel mode experiences
• SP response questionnaires based on the intercepted transit trip

The personal and household demographic section collected standard 
household information designed to be compatible with the previously-
collected Chicago Travel Tracker Household Travel Survey from 2008–2009 
(CMAP, n.d.) to facilitate validation and weighting. This included most 
standard demographic questions regarding age, race, education, income, 
employment status, etc. for the person, as well as household type, housing 
unit, vehicle ownership, transit pass ownership, and number of children, 
students, employed adults, etc., for the household. 

The web-based survey made extensive use of the Google Maps Application 
Programming Interface (API) to reliably collect location information (for the 
starting and ending transit stations and trip OD, display of transit routes, 
and to calculate experienced travel times and alternative mode information. 
The information was stored anonymously in the form of longitude and 
latitude only at the back-end of the survey instrument to comply with the 
conditions laid out to obtain authorization by the institutional review board 
at UC. Examples of the use of the API in the survey instrument are shown in 
Figure 3-1. In addition to the geographic information and the automatically-
generated travel times, wait times, number of transfers, etc., the user also 
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provided information regarding the trip, including fare paid for the trip, 
whether a fare card was used, the number of members in the travel party, 
the access and egress modes, activities that were conducted at the origin 
point, and activity timing flexibilities. The flexibilities in terms of timing—i.e., 
whether the start time or duration could be changed or if there was significant 
pressure to complete the trip on the scheduled time—provided crucial context 
under which the travel was occurring*. 

(a)

* Auld, J., Ley, H., Verbas, O., et al. (2020), A stated-preference intercept survey of transit-rider response 
to service disruptions, Public Transportation 12, 557–585,  https://doi.org/10.1007/s12469-020-00243-z

https://doi.org/10.1007/s12469-020-00243-z
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(b)

(c)
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(d)

Figure 3-1  Trip-based information using Google Maps API—(a) Identifying if 
contact point was start, end, or transfer point in trip; (b) collecting start and/or 
end transit stop; (c) origin location of trip; (d) final destination of trip  
(Map Data © 2018 Google)

An additional set of questions related to the traveler's transit experiences with 
both major transit services in the Chicago region as well as with other mobility 
services such as taxis, TNCs such as Uber and Lyft, the city bike-sharing system 
(Divvy), and car-sharing services (Car2Go, Zipcar). For each transportation 
alternative, users were prompted to respond how frequently it was used (when 
traveling in the Chicago region and when on travel), how long they had been using 
it, which service they used if multiple options existed, and, for the transit, taxi, and 
TNC options, how the time in the vehicle typically was used. An example of the 
experience questions regarding TNC and taxi is shown in Figure 3-2.
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Figure 3-2  Question on TNC and taxi travel experiences 

Design of Stated Preference Scenarios 
The trip characteristics collected, as shown in Figure 3-1, were used as the 
basis for a set of stated-preference questionnaires with randomly-altered 
modal characteristics set according to an experimental design (discussed in 
the next section). This information was used to construct the stated-preference 
disruption response questions. An example of the disruption response is shown 
in Figure 3-3, where the service was cancelled and a shuttle bus was provided. 
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The questionnaires where the service was delayed look similar, but the first 
option was renamed “Wait for service restoration” instead of “Shuttle bus,” and 
the descriptive paragraph similarly notes “Delayed” instead of “Canceled.” 

The information displayed to the respondent pivoted off the exact transit and 
driving trip characteristics as determined by the Google Direction API router 
at the actual time of departure, so real-time traffic congestion, current transit 
schedule, etc., were accounted for when setting the scenario values. Each 
respondent was shown four randomly-generated choice situations, generated 
as described below. 

The construction of the option table started with three known parameters—
drive time T tdrive, drive distance Ddrive, and transit time T ttransit, estimated using the 
Google router based on the currently-observed trip. There were six additional 
key parameters generated randomly in each choice scenario, including: 

• S: status of original trip (cancelled or delayed)
• D: transit travel time delay (as a percentage of original trip)

Figure 3-3  Transit trip disruption response example question  (Map Data © 2018 Google)
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• P: TNC surge pricing factor, as a % increase in base fare
• Wtaxi: taxi waiting time, in minutes
• Wtnc: TNC waiting time, in minutes
• Wshuttle: Shuttle service waiting time, % of the delay D due to waiting for

shuttle

In the current scenario generator, there was a 50% change of setting trip status 
S to “cancelled.” In this case, the traveler was informed that the shuttle service 
would be provided and Wshuttle percent of D was assigned to shuttle waiting, 
while the remainder of the delay was due to slower/more circuitous shuttle 
service. 

The delay parameter D was set using a random value r between three regimes: 

∈ (0.15,0.3)	        |	 r ≤ 0.33

D = {∈ (0.5,1.0)    |	 0.33 < r ≤ 0.66

∈ (1.5,3.0)        |	 r > 0.66

Similarly, the surge pricing parameter P was set as: 

∈ (0.15,0.25)	       |	 r ≤ 0.33

P = {∈ (0.5,1.5)    | 0.33 < r ≤ 0.66

∈ (2.5,4.0)        |	 r > 0.66

The taxi wait time Wtaxi was set as: 

r (5, 15)	       |	 r ≤ 0.5

Wtaxi = {∈ (30, 45) |	 r > 0.5

The TNC wait time Wtnc was set as a single regime, with lower range than taxi, as 
it was assumed that surge pricing would minimize increases in wait time for a 
vehicle. The value was set as: 

Wtnc ∈ (3, 15)

Finally, the shuttle wait Wshuttle is set randomly using r in two regimes, as: 

∈ (0.25,0.4)	      |	 r ≤ 0.5

Wshuttle = {∈ (0.5,0.75)|	r > 0.5

The settings for all six parameters were chosen to give enough realistic variance 
in the attributes shown to the chooser without being too far outside of realistic 
values but have no direct meaning in and of themselves. The six parameters 
were then used to create the display values shown to the respondent, as seen 
in Figure 3-3. Note that two options—change destination and cancel trip—have 
no characteristics, while the “get a ride from family/friend” option simply used 
the drive time, with no additional cost. If this option was selected, however, the 
respondent was prompted to estimate what the wait time for the pickup would 
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be. The “pick up my vehicle” option was defined with the drive time along with 
an additional travel time to pick up the vehicle depending on its location, but 
was allowed only as an option if the traveler indicated that there was a vehicle 
available. The remainder of the display parameters were set as follows. 

The wait times for a non-cancelled transit trip and a shuttle transit trip were 
calculated as: 

TWtransit = D * Tttransit

TWshuttle = Wshuttle * TWtransit

For shuttle trips, the new travel time became: 

Ttshuttle = TWtransit + Tttransit - TWshuttle

Thus, the shuttle and transit options (depending on which was shown) both 
used the same delay parameter, but the shuttle used a smaller fraction of the 
delay to the wait time, assuming that shuttles could be provided faster than 
service could be restored. The remainder of the delayed time was then added 
to the observed transit travel time to represent worse level of service for the 
shuttle bus compared to the regular route. This allowed exploration of trade-
offs between rail and bus service and between wait time and in-vehicle time, 
depending on the differential impacts between shuttle and delayed service. 

The wait times for the taxi and TNC modes were set as described above, and 
the carpool mode was entered directly by the user. The travel times for all 
auto-based modes were the same, Tt

drive, except for using the “pick up vehicle” 
option, as described above. The costs for taxi and TNC were set using the drive 
distance, Ddrive, as follows, where cost is in dollars and distance is in miles, with 
the parameter values assigned using approximations based on local taxi and 
TNC rate information: 

Ctaxi = 3.25 + Ddrive * 2.25

Ctnc = (1.75 + Ddrive * 1.0)* P

The TNC price was set to be approximately half of the taxi cost, before surge 
pricing was applied. The randomly-applied scenarios represent a range of 
cases where sometimes service was restored quickly or slowly or replaced 
with alternate shuttle service which had high, moderate, or low performance 
characteristics, which compete against taxi and TNC modes that vary on wait 
time and cost. Overall, the scenarios should allow for reasonable estimates of 
behavior under limited transit disruptions, especially as they are grounded in 
observed trips and travel behavior. 

It is important to note that the cost and time levels for the modal service parameters 
here were not set to be exactly what would be observed in any real-world scenario, 
but rather were designed to vary within reasonable bounds. This is crucial, as the 
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intended use of these survey data is to study how travelers value different service 
attributes and characteristics under different travel and disruption scenarios 
through behavioral choice model development. To study these various trade-offs, 
having this variance in the experimental design was critical. 

Sampling Frame Design  
and Survey Administration 
The survey was conducted at 100 stops, randomly selected based on ridership 
patterns and distributed among the service agencies. In total, 30 bus and 30 rail 
locations from CTA were selected, along with 20 Metra and 20 Pace locations. The 
Metra and Pace stops were oversampled due to lower ridership and more infrequent 
service to ensure adequate sample sizes for further analysis. A map of the Chicago 
transit system and the location of the intercept points is shown in Figure 3-4. 

Figure 3-4  Chicago transit system and survey sample locations   
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Description of Sampling Frames and Stratification 
Transit riders were recruited at each of the four major transit systems in the 
Chicago area—CTA L trains, CTA buses, Metra commuter trains, and Pace 
suburban bus stops. Stations and stops were sampled using a Probability 
Proportional to Size (PPS) sampling approach, with the size represented by 
the number of riders passing through each station. Based on this approach, 
a representative sample of stations was drawn from the universe of stations 
within each transit system. 

Each transit system had uniquely organized station throughput data. Some 
systems provided only data for weekday ridership, and others provide only 
ridership by route, with only approximate information about boarding and 
alighting for each station. For this reason, along with statistical considerations, 
each transit system was considered a sampling stratum. This allowed for 
independent sampling from each of the transit system and removed the need to 
combine data from each of the systems into a single file for sampling. In general, 
sample frames were built based on the number of weekday boarders and 
alighters where the data allowed. 

As noted, stations and stops were selected within each transit mode using PPS 
sampling. Each selected station/stop, also referred as a Primary Sampling Unit 
(PSU), was randomly assigned a weekday time block for data collection. These 
time blocks constituted six-hour blocks that spanned Monday through Friday 
of each week. PSUs were assigned time blocks between 7:00 am–1:00 pm or 
1:00–7:00 pm. 

A number of stations within most of the transit systems did not have enough 
throughput data to provide an adequate number of riders for recruitment. 
In addition, a few stations and routes fell outside the data collection region, 
namely McHenry and Kane counties. However, the total ridership for all four 
transit systems included riders from these low traffic and remote stations 
and routes. To compensate for the exclusion of these stations from selection, 
the stations that remained in the frame were treated as a sample, and the 
ridership of stations and routes that were not in the sample across all the 
stations that were eligible for selection were proportionally distributed. As 
the stations and stops were selected within each transit mode using PPS 
sampling, this meant that the size for each station or stop was derived from the 
“reweighted ridership” after the sub-sampling was implemented. Each transit 
mode presented its own sampling challenges based on data structure and/or 
distribution of ridership in the system. 

Boarding and alighting data at each stop were available for CTA bus stops 
along with information related to direction and bus routes. Only stops with at 
least 400 total riders boarding and alighting the bus on an average weekday 
were considered for selection. This meant that 1,307 total stops, or about 10% 
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of all stops were considered. Given the distribution of ridership and eligibility 
of selection, no special treatment was necessary for any large stations. CTA L 
trains stations were sampled based on boarding data only, as alighting data 
were not available. As all stations had adequate throughput data for sampling, 
all 144 CTA L stations were eligible for selection. It is important to note that 
these data are station-based; no information was available on which direction 
boarders were going or which train line they were boarding for stations with 
multiple platforms or lines. For this reason, only boarders at the point(s) of entry 
for any selected station were recruited. 

Metra stations were selected based on boarding and alighting in both directions 
at each given station. To be eligible for selection, stations needed to service at 
least 400 riders on an average weekday; this amounted to 156 of 238 stations. 
There were four stations with a large portion of total ridership, all of which 
were commuter destination stations near the loop—Union, Ogilvie, LaSalle, 
and Randolph. It was determined that these stations allowed for the sampling 
of riders with geographically-diverse originations and destinations, so all were 
included in the sample as certainty PSUs. The remaining Metra stations were 
sampled using PPS. 

Pace was the only transit system that did not have loading and unloading 
station data; thus, sampling could not rely on that information. Instead, routes 
that were determined to have adequately large ridership (>=300 riders per 
weekday) were sampled based on overall ridership. With that, a single stop was 
then selected for that route based on a distribution of boarders and alighters for 
each route. This amounted to an extra sampling step for Pace. 

Recruitment and Survey Administration 
Transit commuters were recruited at Pace, Metra, and CTA transit stations 
within the Chicago metropolitan area based on the sampling strategy for the 
study from November 27, 2017, through January 21, 2018. Trained interviewers 
were positioned in or near stations depending on access rights granted by each 
transit authority to intercept respondents. Interviewers were instructed to 
select commuters entering or exiting the station, provide a short description of 
the study, and offer a tear-off sheet that contained all information necessary for 
completing the web survey. In addition, they provided pens as token incentives 
and explained that a $5 Amazon electronic gift card would be offered when 
the participant completed the web survey. The entire interaction between 
the interviewer and the respondent lasted about three minutes. Interviewers 
used a tear-off notepad, where each sheet had an ID number on the top and 
lower portions. The bottom portion included instructions on how to log in to 
UC’s online survey and additional project contact information. The invitation 
provided a PIN that the respondent would use to log in to the online survey. 
The use of a PIN prevented non-invited riders from participating to receive the 
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incentive. Interviewers saved the top portion of the sheet and mailed it back 
to management headquarters at the end of the field period. After recruiting at 
every station, interviewers were instructed to immediately input the number of 
tear-off sheets they successfully distributed at each station. Safety was an issue 
in several neighborhoods; for those areas, management dispatched multiple 
field interviewers at each station. 

For Metra and Pace stations, transit commuter boarders and alighters were 
sampled in both directions to ensure that both were covered. For CTA buses, 
commuters were surveyed only on one side of the street at the exact stop. 
Aerial maps and a description of each stop were provided for interviewers to 
reference. For CTA trains, interviewers were instructed to stand just beyond 
the turnstiles to capture riders boarding and alighting multiple lines at each 
station. Bus stations proved to be the most difficult to work, as ridership was 
very low and six hours was a long time to stand and wait during the cold winter 
months. In contrast, train stations had  high ridership and presented their own 
challenges to intercepting a large group of moving people who did not want 
to stop. Commuters using the Metra train stations and some CTA L suburb 
train stations were generally more open to being approached and were not as 
apprehensive as commuters on the inner-city CTA L, CTA bus, and Pace stations. 

In preparation for the survey, 15,500 survey cards with tear-offs were printed, to 
be handed out to transit passengers at intercept points (~150 per station, with 
250 per major transit hub). In total, 6,377 travelers were approached and given 
the tear-off portion of the survey form. Of those contacted, 892 followed up by 
logging in to the online survey, and 659 completed the full survey in an average 
time of 21.9 minutes, a 10.3% rate of completed survey entries.  In total, 73.5% 
of participants fully submitted the survey. In a dry-run performed in advance of 
the actual survey, the team captured information on how much time users spent 
on individual pages of the questionnaire and addressed issues on several survey 
pages that appeared to be challenging for users. The team did not analyze the 
timing information during the actual survey, although the data likely contain 
interesting insights that may warrant further evaluation. For example, browser 
identification strings were captured, allowing distinguishing between mobile 
and other devices. Based on anecdotal observations, the return rate for Metra 
riders and users of CTA trains was substantially higher than for bus passengers, 
with suburban bus riders having a much lower turnout. Many train passengers 
started the survey shortly after being handed the forms using mobile devices, 
quite often finishing the survey from a stationary device later. The meta-data 
captured was not specifically relevant for the primary purpose of the survey but 
may provide interesting insights for other research topics. 

Survey Results 
The dataset included information on 659 individuals making 659 transit-
based trips and included socio-demographic characteristics of households, 
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persons, vehicles, and detailed information on a random transit-based trip for 
all purposes as well as detailed information regarding respondent commute 
trips. Also collected was detailed information related to respondent perception 
toward transit systems and their opinions regarding other types of travel 
modes. The dataset consisted of 46% male and 54% female participants who 
lived in Chicago metropolitan area and included 72% full-time workers, 11% 
part-time workers, 3% unemployed, 3% retired, 9% students, and 2% other. 
Overall, 32% of participant households had an annual income below $50k, 32% 
between $50k and $100k, and 36% more than $100k per year. A full description 
of the sample with regards to household and individual demographic 
characteristics of the respondents compared against weighted estimates from 
the last regional household travel survey (CMAP, n.d.) for transit riders age 18 
and over are presented in Figure 3-5. 

Figure 3-5  Comparison of survey household and person characteristics to CMAP transit riders  
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The survey gathered detailed trip attributes for a random trip chain on a 
typical day. Respondents were asked to provide full information about transit 
trip attributes and the corresponding access and egress trips. Of the 659 
respondents, 350 were intercepted at CTA rail stops, 107 at CTA bus stops, 174 
at Metra stops, and 28 using Pace. Approximately 68% were intercepted during 
their commute to work trips, 16% stated that they took the trip regularly but not 
for work, and the remainder stated that they did not make the intercepted trip 
regularly. Figure 3-6 presents the distribution of activity types at the origin and 
the destination of the intercepted trip.

 
In addition to respondent activity type at the origin and destination, the 
survey collected information regarding flexibility of these activities. Analysis 
of the dataset revealed that 20.64% and 28.55% of respondents had complete 
freedom about timing of departure from the origin and arrival at the 
destination, respectively. On the other hand, 33.69% had to leave the origin and 
29.14% had to arrive to the destination at an inflexible time. Figure 3-7 presents 
the distribution of departure time in the sample.

Figure 3-6  Distribution of activity types at origin and destination of each trip   
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The survey also collected other characteristics of the trip such as travel 
distance, travel time, number of transfers, and accompaniment. Figure 3-8 
shows the distributions for travel distance and travel time in the sample. 
Suburban mode riders tended to have travel longer distances, and the bus 
mode riders tended to have longer travel times. Also observed was that the 
majority of trips, 67%, had no transfers and only 10.5% had more than one 
transfer. Moreover, 86% of respondents were traveling alone and 11% were 
traveling with friends and family; the remaining 3% were traveling with others 
such as co-workers.

Access and egress characteristics of the trip were also a key factor in the survey. 
The distribution of access and egress distance to the first/last station on the 
transit trip by transit mode are shown in Figure 3-9. The suburban modes 
tended to have much higher access distances compared to the urban modes as 
expected, with 75% of all CTA trips originating and terminating within 2 km of 
the start and end stop.

Figure 3-7  Departure time distribution in sample   

Figure 3-8  Cumulative distributions of trip distance and travel time by mode   



FEDERAL TRANSIT ADMINISTRATION 	 64

SECTION  | 3 

A unique feature of the survey was the focus on the time-use behavior of 
transit riders during the intercepted trip. It was hypothesized that time use and 
the ability to use time productively during travel would be a critical driver of 
both baseline mode choice and choices made under the disrupted scenarios. 
Respondents were asked to answer questions about time spent on various 
activities during their trip to include this effect in later model development. 
Activities included reading, conducting work or school-related activities, using 
smartphones for entertainment, talking on the phone, socializing, and relaxing; 
Table 3-1 presents the distribution of in-transit activity duration in the sample. 
Based on the result of data analysis, using a smartphone for entertainment 
and relaxing were the most-conducted activities. A substantial number of 
travelers, however, spent at least some time on work- (14%) or school-related 
(6%) activities while traveling, indicating some productive use of in-vehicle 
time. Interestingly, time-use behavior did not vary significantly between the 
bus and rail modes. Preliminary modeling work using these data indicated 
the importance of time use to mode choice, although more work is needed to 
extend this to the disrupted travel context (Krueger et al., 2019).

Figure 3-9  Cumulative distribution of (left) access and (right) egress distances by mode   
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Preliminary Data Analysis 
 As the purpose of the survey was to understand how transit travelers respond 
to unexpected disruptions, a preliminary data analysis was conducted to 
explore the stated traveler responses to the random disruption scenarios. 
Responses and key mode option characteristics such as average wait time, 
travel time and cost, and the standard deviation of those values are shown in 
Tables 3-2 and 3-3. The responses and characteristics are differentiated based 
on whether the respondents had access to a private automobile and whether 
the trip was delayed or canceled and replaced by shuttle service. The main 
difference in the delayed vs. canceled trips was on whether additional travel 
time was included as part of the wait for transit to be restored (delayed) or in 
the transit in-vehicle travel time (canceled) provided by a less-efficient shuttle 
mode. These values are reported as Avg Trans. Wait and Avg Trans. IVTT in Table 
3-2. The remaining characteristics were, on average, approximately similar 
between each scenario; however, substantial difference was observed when the 
characteristics were further distinguished by the selected mode. 

Table 3-1  Duration of In-Transit Activity in Sample 

Activity type None Very little 
of my time

Some of 
my time

Most of 
my time

All of my 
time

Reading 68.74% 6.22% 10.17% 10.77% 4.10%
Using smartphone for entertainment 20.03% 11.53% 23.52% 28.83% 16.08%
Talking on phone 83.92% 7.28% 6.53% 1.52% 0.76%
Work-related activity 79.21% 7.13% 9.86% 2.73% 1.06%
School-related activities 91.50% 2.58% 4.25% 1.21% 0.46%
Socializing or talking with others 81.18% 5.77% 7.44% 3.49% 2.12%
Relaxing/doing nothing) 44.31% 13.66% 25.19% 10.62% 6.22%
Other 93.17% 2.12% 3.03% 0.61% 1.06%
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Table 3-2  Average Characteristics by Selected Mode When Transit 
Delayed vs. Canceled 

Selected Mode Count
Avg

Transp
Wait

(min)

Avg
Transp

IVTT
(min)

Avg
TNC
Wait

(min)

Avg
TNC
Cost

(USD)

Avg
Taxi
Wait

(min)

Avg
Taxi
Cost

(USD)

Avg
Auto
Time
(min)

No Auto Available 
Transit delayed 685 82.4 44.1 9.6 47.4 21.5 35.6
      Ask for ride 7.0% 108.9 54.9 9.9 67.1 21.1 48.3
      Wait for transit 46.6% 49.0 38.7 9.6 41.8 21.3 32.5
      Use taxi 9.9% 132.1 52.7 10.2 52.9 18.8 35.3
      Use TNC 20.0% 75.5 32.8 9.2 22.7 24.0 21.2
      Cancel trip 8.9% 179.7 74.0 9.9 109.2 21.7 68.3
      New destination 7.6% 102.2 51.2 9.6 48.0 20.5 42.8

Transit canceled 730 36.3 93.4 9.4 48.0 21.8 37.5
      Ask for ride 8.4% 58.4 114.8 8.7 70.5 22.1 51.4
      Use shuttle 54.7% 59.5 118.4 9.5 49.5 14.7 35.7
      Use taxi 9.2% 29.3 90.4 8.9 23.9 21.7 22.8
      Use TNC 18.1% 58.4 114.8 8.7 70.5 22.1 51.4
      Cancel trip 6.7% 59.7 154.8 9.6 83.4 24.6 67.9
      New destination 3.0% 46.8 100.3 9.7 44.6 19.9 30.5
Auto Available
Transit delayed 480 77.9 42.2 9.6 58.4 21.4 42.7 52.7
      Ask for ride 6.6% 128.8 52.4 10.2 77.3 21.0 55.8 52.8
      Auto drive 8.9% 133.9 51.8 8.7 78.8 22.2 59.7 53.6
      Wait for transit 47.2% 37.6 35.7 9.7 51.0 21.8 38.3 52.1
      Use taxi 6.8% 111.1 41.3 10.2 61.0 16.7 31.9 50.1
      Use TNC 13.9% 85.1 40.7 9.9 34.6 22.2 31.9 45.4
      Cancel trip 10.1% 110.0 47.5 9.8 80.5 20.3 55.5 59.6
      New destination 6.6% 141.7 62.5 8.6 78.3 22.9 52.8 64.8
Transit canceled 498 36.6 95.7 9.5 58.4 22.5 43.6 51.8
      Ask for ride 5.9% 65.8 210.4 8.6 88.5 23.8 65.4 60.3
      Ask for ride 12.8% 40.3 112.3 9.3 82.4 23.1 56.2 56.1
      Use shuttle 46.9% 20.3 64.1 9.8 48.2 21.4 35.4 46.6
      Use taxi 5.5% 88.2 129.7 9.5 83.8 18.4 52.3 64.7
      Use TNC 12.6% 40.9 96.8 8.8 31.5 24.8 31.6 50.7
      Cancel trip 12.3% 43.2 98.4 9.6 58.7 23.8 51.0 58.6
      New destination 4.0% 67.4 185.4 10.0 106.2 26.6 70.8 57.8
Total 2586 51.1 66.1 9.5 48.5 21.7 36.8 47.9
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Table 3-3  Standard Deviation of Characteristics by Selected Mode When Transit 
Delayed vs. Canceled 

Selected Mode Count
Std Dev 
Transp

Wait
(min)

Std Dev 
Transp

IVTT
(min)

Std Dev
TNC
Wait

(min)

Std Dev
TNC
Cost

(USD)

Std Dev
Taxi
Wait

(min)

Std Dev
Taxi
Cost

(USD)

Std Dev
Auto
Time
(min)

No Auto Available
Transit delayed 685 162.9 63.1 2.8 118.4 15.7 35.6
      Ask for ride 7.0% 88.4 55.1 2.8 108.8 16.2 48.3
      Wait for transit 46.6% 151.0 63.7 2.8 112.1 16.0 32.5
      Use taxi 9.9% 295.6 88.5 2.8 50.2 15.3 35.3
      Use TNC 20.0% 69.6 26.0 2.8 65.7 15.2 21.2
      Cancel trip 8.9% 197.7 78.9 2.8 251.1 15.7 68.3
      New destination 7.6% 99.4 63.5 3.0 55.9 15.3 42.8
Transit canceled 730 110.5 186.2 2.8 87.5 15.5 37.5
      Ask for ride 8.4% 96.9 110.1 2.7 95.3 15.2 51.4
      Use shuttle 54.7% 130.5 143.0 2.9 81.7 15.5 37.3
      Use taxi 9.2% 104.9 237.6 2.8 62.5 14.0 35.7
      Use TNC 18.1% 53.3 262.6 2.8 54.3 15.8 22.8
      Cancel trip 6.7% 77.5 257.0 2.6 179.1 15.5 67.9
      New destination 3.0% 43.5 79.1 2.9 35.6 14.6 30.5
Auto Available
Transit delayed 480 118.1 40.5 2.9 72.9 15.7 42.7 52.7
      Ask for ride 6.6% 93.3 27.2 2.7 50.0 15.9 55.8 52.8
      Auto drive 8.9% 134.2 28.2 3.0 94.8 16.4 59.7 53.6
      Wait for transit 47.2% 58.5 33.6 2.9 57.8 15.7 38.3 52.1
      Use taxi 6.8% 167.5 46.5 2.8 129.7 15.3 31.9 50.1
      Use TNC 13.9% 75.6 47.9 2.8 59.5 15.9 31.9 45.4
      Cancel trip 10.1% 83.6 28.8 2.7 68.7 15.4 55.5 59.6
      New destination 6.6% 284.7 77.3 2.7 87.8 15.5 52.8 64.8
Transit canceled 498 69.8 173.9 2.8 81.2 15.8 43.6 51.8
       Ask for ride 5.9% 87.9 418.0 3.0 162.2 15.8 65.4 60.3
      Auto drive 12.8% 37.9 58.1 2.8 74.6 15.7 56.2 56.1
      Use shuttle 46.9% 32.9 119.5 2.9 69.2 16.0 35.4 46.6
      Use taxi 5.5% 220.9 206.3 2.7 130.2 16.7 52.3 64.7
      Use TNC 12.6% 48.3 186.4 2.7 41.3 15.6 31.6 50.7
      Cancel trip 12.3% 44.7 82.6 2.7 51.0 15.2 51.0 58.6
      New destination 4.0% 74.1 321.4 2.7 88.8 14.4 70.8 57.8
Total 2586 51.1 123.2 137.1 2.8 92.7 15.76 39.6
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Overall, about 49% of travelers would stay with the transit service, either 
waiting for the service to be restored or taking the provided shuttle. The next-
highest selected mode was the use of a TNC, at about 19%, when no auto was 
available or 13% when an auto was available. Users with access to a nearby 
car would choose to use that car in only 11% of cases. Finally, about 15% of 
travelers indicated they would alter their trip by either cancelling it or choosing 
a new destination. The selected modes had different characteristics, as 
expected, with cases in which auto modes are used having very high transit wait 
and/or transit in-vehicle travel times. This effect can be observed in Figure 3-10, 
which shows transit mode-share after disruption by both the transit wait time 
and transit in vehicle time. As shown, the transit share drops off as the wait time 
and travel time increase, to about 15–20% for the longest times.

A similar effect can be observed for the other modes. For example, the TNC 
and the combined auto-drive and ask for ride mode shares are shown in Figure 
3-11, respectively, for increasing TNC cost. As the cost increases, the TNC mode 
decreases from 27% of the sample to less than 5%, and the combined auto 
modes increase from 5% to almost 15% (when no auto is available) and 25–30% 
when an auto is available.

Figure 3-10  Transit mode share by (left) transit wait time and (right) transit IVTT 
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The type of activity to which the transit rider is originally traveling also had a 
strong impact on the response decision. The distributions of the selected mode 
by activity type for scenarios with and without auto access are shown in Figure 
3-12. Several key differences between the responses for each scenario can be 
seen. Interestingly, the availability of an auto to complete the trip did not seem 
to influence the overall rate at which transit was used, dropping the overall rate 
from 51% to 47%. However, the type of trips that stayed with the transit mode 
in each scenario was quite different. For those with auto access, shopping and 
work trip passengers stayed with transit at a higher rate than those without, 
likely reflecting the more competitive nature of transit travel for those already 
electing to take transit in spite of automobile access. Alternatively, although the 
majority of discretionary trips for travelers with no auto stayed with the transit 
mode, almost 20% of such trips were canceled when an auto was present. 
Errand trips also were substantially more likely to be re-planned when an auto 
waws present, whereas many were canceled when no automobile was present. 

A related factor that also influenced mode response is start time flexibility of 
the activity. This is often closely related to the activity type, although there is 
substantial variation within the activity categories. 

Figure 3-11  Share of (left) TNC and (right) auto drive/passenger by TNC cost (US$) 
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Figure 3-13 shows the choice distributions for response mode with and without 
auto access. As flexibility decreases, the likelihood of switching to the auto 
mode increases substantially when an auto is available. Interestingly the 
selection of TNC mode decreased as the selection of driving increased, opposite 
the effect observed for the case when no automobile is available. In both cases, 
there is a slight decrease of 4–7% in the use of the transit mode. Given the large 
number of factors driving mode choice behavior under disruption and the 
complex interactions between these factors, further multivariate analysis of the 
behavioral processes observed here are needed. Modeling and analysis studies 
of these data are ongoing, with several preliminary studies already completed 
that document variations in willingness to pay for various services under 
disruption (Saxena et al., 2019) as well as exploring in greater depth the use of 
time and multitasking behavior while traveling (Krueger et al., 2019).

Figure 3-12  Mode share by activity type (left) with auto and (right) without auto access ) 
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Discussion 
Key preliminary findings from the exploratory analysis of the survey data 
demonstrated how transit rider response to disruptions is influenced by many 
factors. These include type of service restoration provided (delayed until service 
is restored vs. providing shuttles to route around disruptions), characteristics 
of the service in terms of wait time and cost, presence of high-quality modal 
alternatives, and the individual’s travel context. Travelers with access to an 
automobile at the point of learning about the service disruption had quite 
different response profiles than those that did not, with fewer travelers staying 
with transit service. Also, the context in which the travel is occurring, especially 
if it is to mandatory-type activities (i.e., work, school, business, etc.) and has low 
flexibility, strongly influences the response behavior. 

The findings in this study were compared to those in other, similar surveys of 
transit rider response. According to Currie and Muir (2017), 68% of travelers 
used the shuttle buses, whereas in this study it was 54.7% and 46.9% depending 
on auto availability. The difference can be attributed to the fact that their 
study focused on rail service disruptions in Melbourne, Australia, where 
overall satisfaction with rail service is quite high. On the other hand, this study 
comprised urban bus and rail, suburban bus, and commuter rail, with overall 
satisfaction expected to vary. As a result, travelers are more likely to switch to 
other modes, change destination, or cancel their trip. 

The study by Lin et al. (2018) found that subway and shuttle delays were 
significant and more impactful than in-vehicle time, indicating the higher 
burden to travelers of wait time than in-vehicle time, as observed in the 

Figure 3-13  Mode share by activity start flexibility (left) with auto and (right) without 
auto access 
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preliminary analysis above. Interestingly, no significant impact from information 
provision about service recovery time or shuttle service was found in that 
study. This could not be compared to the findings in this study, as information 
provision was not tested in the SP-design, but potential future versions of this 
study could test for such an effect. Similar distributions of disrupted mode 
choices were observed in the Lin et al. (2018) study as in this study, with the 
majority of riders staying with a transit mode (67% vs. 50%), with smaller shares 
for auto-based modes (16% vs. 36%) and trip cancellation (5% vs. 9%). It is 
important to note, however, that these results are both from SP surveys and, as 
such, are highly dependent on the choice attribute assumptions and not directly 
comparable. More important is the trend in key variables that can be studied 
through comparison with choice modeling results. Shares are mentioned here 
only to indicate similar trends. 

Further analysis is needed to explore the relationships between all these 
factors, but preliminary findings demonstrate the presence of these effects, 
which can help transit agencies in planning appropriate transit alternatives 
under disruption scenarios. For example, shuttle service provided to commuter 
rail stations of the type operated by Metra, where many travelers are on the way 
to work or school and arrive with autos, would need less capacity than some 
services serving a more transit-dependent market, such as Pace. It is also clear 
from this study that with the growth in TNC deployment in the Chicago area, this 
would relieve some pressure from transit agencies to provide alternative service 
in areas where TNCs are prevalent and surge pricing is not too onerous. TNC 
providers especially seem to be filling a niche with transit riders without access 
to an automobile for completing mandatory, low-flexibility trips, with about 
25% of such hypothetical riders in this situation choosing that mode. These 
findings provide impetus for further analysis through behavioral modeling and 
simulation for more specific scenarios of interest to transit agency operations 
managers and can help inform future response plans. 

Conclusions 
A web-based intercept survey was conducted that was designed and 
implemented to understand better the responses of transit riders in the Chicago 
metropolitan area to a variety of unplanned service disruptions. Transit riders 
on three primary Chicago-area bus and rail service providers (CTA, Metra, Pace) 
were intercepted in the field and asked to complete a web-based revealed 
preference and stated preference survey instrument regarding the intercepted 
trip. Area transit stops were sampled according to a sampling plan based on 
local ridership information to ensure a representative sample of transit riders 
for further analysis. Each participant completed a questionnaire regarding the 
intercepted trip and provided demographic and travel experience information. 
The respondents then answered a series of stated preference questionnaires 
where the current trip was randomly disrupted and alternative travel modes 
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were proposed with service characteristics based on a full factorial random 
design. 

The transit disruption scenarios were designed to understand individual 
trade-offs between various mode alternatives and travel plan modification 
strategies under a variety of scenarios. Altogether, 659 transit riders gave 
responses to 2,626 different disruption scenarios. Overall, the survey sample 
matched well to the regional characteristics of transit users as observed in the 
previous household travel survey collected by the local metropolitan planning 
organization. In general, a plurality of riders (46%) chooses to continue using 
transit, either waiting for service restoration or using agency-provided shuttle 
service, although at a decreasing rate as the travel delay increased. Such 
information is potentially significant for transit agencies when understanding 
the level of service and transit resources to allocate to recovery of disrupted 
routes. Fewer riders, approximately 15%, choose to alter their activity 
patterns altogether, and 26% would alter their travel to use either a taxi or an 
alternative transportation network company service. A key finding is that transit 
riders respond more positively to shuttle service than to waiting for service 
restoration, even when the total travel time is the same. 

Having a more detailed understanding of the behavior of riders under various 
disruption scenarios should allow transit agencies to better prepare for service 
recovery and restoration after and during local disruptions. Preliminary 
analysis of the responses observed during the hypothetical disruption 
scenarios demonstrate the need for more detailed multi-variate analysis of 
the response behavior of individual travelers. Such analyses can determine 
the importance that modal travel characteristics (e.g., wait, travel time, 
costs), individual demographics, and disruption scenario characteristics (i.e., 
delayed vs. canceled service, information provision, etc.) have on the decision-
making of individuals. Such models have been estimated using the data 
collected through this survey, such as the research on commuter willingness 
to pay under disruptions (Saxena et al., 2019). These models can be used to 
improve forecasting for general disruption response including during service 
recovery efforts to better transit and make more effective use of transit assets. 
Additionally, other information collected during the survey effort, including 
traveler trip-specific and generalized time use in transit and other modes, 
attitudes towards transit and other modes, and experiences with new mobility 
as a service option can be used to help improve understanding of transit rider 
time use, time valuation, and mode choice behavior. 
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Time-Dependent Intermodal 
A* Algorithm: Methodology and 
Implementation on a Large-Scale 
Network4  
This study proposed a Time-Dependent Intermodal A* (TDIMA*) algorithm. The 
algorithm works on a multimodal network with transit, walking, and vehicular 
network links and finds paths for the three major modes (transit, walking, 
driving) and any feasible combination thereof (e.g., park-and-ride). Turn 
penalties on the vehicular network and progressive transfer penalties on the 
transit network are considered for improved realism. Moreover, upper bounds 
to prevent excessive waiting and walking are introduced, as well as an upper 
bound on driving for the park-and-ride (PNR) mode. The algorithm is validated 
on the large-scale Chicago regional network using real-world trips against the 
Google Directions API and the Regional Transit Authority router. 

Introduction 
TNCs such as Uber and Lyft, car-sharing and bike-sharing companies, 
on-demand transit services, Connected and Autonomous Vehicle (CAV) 
technologies, and the increasing availability of real-time traffic and transit 
information give travelers the opportunity to evaluate their multiple routing 
options and make better-informed decisions. The advent of real-time control 
and management technologies and vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication technologies provide opportunities 
to increase mobility, accessibility, throughput, and safety in the entire 
transportation network. These advancements call for a comprehensive 
modeling of the transportation system as an integrated multimodal network. 

Most existing transportation network modeling literature focuses on the 
vehicular traffic network or the transit network. The full integration of the 
two major modes is usually limited to small hypothetical networks, which is 
not practical for large cities. At the large scale, the integration is performed in 
an ad hoc fashion, where separate models communicate with each other at 
designated outer iterations. The drawbacks of this approach are as follows: 

• The interaction between the transit traffic and vehicular traffic cannot be
modeled properly. For instance, transit buses share the street network with
passenger cars and affect the performance characteristics of each other.

4  Authored by Ömer Verbas, Joshua Auld, and Hubert Ley, University of Chicago/Argonne, and  
Randy Weimer and Shon Driscoll, Argonne.
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• The modeling of intermodal routing such as PNR, kiss-and-ride (KNR), taxi/
TNC/CAV to transit, taxi/TNC/CAV after transit is limited.

• The modeling of en-route mode switching is limited.

As a result of all of the above, the integration of the transportation supply model 
with the Activity-Based Demand Models (ABM) is limited. 

This study proposed a flexible intermodal routing algorithm that can provide 
time-dependent shortest paths for conventional modes such as passenger car 
and walk-to-transit, as well as any feasible intermodal combination such as 
PNR, KNR, taxi/TNC/CAV before/after transit, and so on. 

Literature Review 
Shortest path algorithms with label setting (Dijkstra, 1959) and label correcting 
(Ford, 1956; Bellman, 1958) algorithms date back to 1950s, where the link costs 
are static and deterministic. The first time-dependent algorithm was introduced 
by Cooke and Halsey in 1966 (Cooke and Halsey, 1966), whereas the first hybrid 
label setting/correcting algorithm was introduced by Glover et al. in 1985 
(Glover, Klingman, and Phillips, 1985). 

A series of large-scale implementations was introduced in Ziliaskopoulos and 
Mahmassani (1993), Ziliaskopoulos (1994), Ziliaskopoulos and Mahmassani 
(1996), and Ziliaskopoulos and Wardell (2000). A time-dependent large-scale 
implementation was presented in Ziliaskopoulos and Mahmassani (1993), 
whereas a static implementation with intersection movement penalties 
and prohibitions were introduced in Ziliaskopoulos and Wardell (1996). A 
multimodal, time-dependent algorithm with movement and transfer penalties 
was introduced in Ziliaskopoulos and Wardell (2000). In this study, every link 
carries multiple modes and services. At every node, time-dependent transfer 
costs are defined between every adjacent link/service pair (Ziliaskopoulos, 
1994; Ziliaskopoulos and Wardell, 2000). Another approach to multimodal 
shortest path algorithm is the “divide-and-conquer” technique (Abdelghany 
and Mahmassani, 2001; Mahmassani and Abdelghany, 2002; Abdelghany, 
Mahmassani, and Abdelghany, 2007). In this approach, the network is divided 
into sub-networks for every mode, and transfer between the sub-networks is 
allowed only at certain nodes. First, non-dominated sub-paths are found within 
every mode’s sub-network (divide); then, these are combined to form non-
dominated multimodal paths (conquer) (Abdelghamy and Mahmassani, 2001; 
Mahmassani and Abdelghany, 2002; Abdelghany, Mahmassani, and Abdelghany, 
2007).

In conventional shortest path algorithms, the output is a link-path incidence 
matrix with binary values: A link either belongs to a path (1) or not (0). In a 
transit network, a node can serve multiple routes that can take a traveler to 
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his destination. In this case, the binary condition is relaxed to be a probability 
between 0 and 1 to represent the likelihood of a certain link-route (service) pair 
being boarded. This phenomenon was first introduced by Chriqui and Robillard 
(1975). A decade later, Nguyen and Pallottino (1988), and Spies and Florian 
(1989) introduced solution algorithms to solve the common bus lines problem. 
The former introduced the term “hyperpath,” whereas the latter used the term 
“optimal strategy.” Later, capacity constraints were introduced into the transit 
shortest path algorithms (DeCea and Fernandez, 1993; Cominetti and Correa, 
2001; Schmocker, Bell, and Kurauchi, 2008; Schmocker et al., 2011). Verbas (2014) 
and Verbas and Mahmassani (2015) introduced a transit hyperpath algorithm 
that is time-dependent on a frequency-based network with seat and standing 
capacities. 

The initial transit hyperpath algorithms were frequency-based. In the more recent 
years, a schedule-based literature has emerged (Friedrich, Hofsaess, and Wekeck, 
2001). Some exceptions aside (Verbas, 2014; Verbas and Mahmassani, 2015), 
frequency-based algorithms are static, whereas schedule-based algorithms are 
time-dependent (Noh, 2013). Schedule-based algorithms incorporated capacity 
penalties, congestion pricing, and the differentiation between seated and 
standing passengers (Hamdouch and Lawphongpanich, 2008; Hamdouch and 
Lawphongpanich, 2020; Hamdouch et al., 2011; Noh, Hickman, and Khani, 2012). 
Most schedule-based algorithms require the temporal expansion of the network; 
however, Noh, Hickman, and Khani (2012) developed a schedule-based algorithm 
that does not require the said expansion. 

Another branch of the shortest path algorithms deals with user heterogeneity 
(Lu, Mahmassani, and Zhou, 2008; Lu and Mahmassani, 2008; Lu and 
Mahmassani, 2009). In their seminal work, Lu and Mahmassani proposed a 
bi-criterion time-dependent shortest path algorithm where the different value 
of time (VOT) classes emerge naturally from a continuous distribution. 

All algorithms introduced up to this point are tree-based algorithms, where 
the shortest path from (to) a single origin (destination) is found to (from) all 
destination (origin) nodes. In 1968, Hart et al. (1968) introduced the first A* 
algorithm that makes it possible to find an exact shortest path algorithm 
between any two nodes in a static network. In A* algorithms, the node label 
has two components—the actual cost from the origin to the node and the 
estimated (heuristic) remaining cost from the node to the destination. Usually, 
the estimated component is the Euclidean distance divided by the maximum 
allowed speed, which is a lower bound on the actual remaining cost to the 
destination (Hart, Nilsson, and Raphael, 1968). The authors proved admissibility 
of the algorithm as long as the estimated code is never larger than the actual 
cost. A very low estimated cost guarantees an exact solution at the expense of 
a large number of node scans. At the extreme case, the estimated code can be 
set to zero, which makes the algorithm identical to Dijkstra’s (1959) algorithm 
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that terminates when the destination node is reached. Conversely, the larger 
the estimated cost is, the faster the algorithm terminates. However, the code 
may return non-exact solutions if the admissibility condition is violated (Hart, 
Nilsson, and Raphael, 1968). 

Chabini and Lan (2002) extended the A* algorithm to the time-dependent case. 
Zhao et al. (2008) showed that in the time-dependent case, a small enough 
estimated code is a necessary but not a sufficient condition for admissibility. 
First-in-first-out (FIFO) conditions must also be satisfied, which is not guaranteed 
in transit networks. In 1991, Bander and White (1991) introduced a transit A* 
algorithm called Interruptible A* (IA*), where a set of island nodes are pre-
selected, which are favored by the algorithm for faster termination. In 2015, 
Khani, Hickman, and Noh (2015) introduced a Trip-Based A* (TBA*) algorithm for 
transit networks. The algorithm has two major contributions—1) once a node 
(stop) belonging to a transit is scanned, all the downstream nodes are scanned 
and potentially updated; however, unlike in the conventional shortest path 
algorithms, the predecessor node is set as the boarding node, not as the previous 
node, and 2)  for the estimated component of the shortest path label, instead 
of using a Euclidean-based estimator, the authors use the resulting labels of a 
static, all-to-all label setting algorithm. In this estimation algorithm, no waiting 
or transfer times are considered. For the link costs, the minimum observed travel 
time throughout the time horizon from different trips on a given link is used. The 
authors suggest that these costs would serve as a lower bound on the actual 
costs, since any in-vehicle or walking time on a link would be greater than or equal 
to the chosen minimum. Moreover, there would be non-negative waiting times. 

This study introduced a Time-Dependent Intermodal A* algorithm (TDIMA*), 
which extends on Khani et al.’s (2015) TBA* algorithm and makes the following 
contributions: 

• The network representation is multimodal with three types of links—
transit, vehicular traffic, and walking. Walking links are derived from the
street network, and walking is not limited to designated transfer areas (no
pre-defined hierarchy) but allowed along all local and arterial roads.

• The TDIMA* algorithm is multimodal and finds paths for passenger cars,
walking, and walk-to-transit modes.

• The TDIMA*algorithm is intermodal and finds paths for PNR, KNR, and any
other feasible combinations such as PNR, KNR, taxi/TNC/CAV before/after
transit, and so on.

• Similar to the TBA* algorithm, the TDIMA* algorithm uses the results of a
label-setting algorithm as estimated costs. However, instead of performing
the label setting algorithm from every link to every link, we perform the
algorithm from every traffic analysis zone (TAZ) to every link in order to
reduce computational time.

• Unlike the TBA* algorithm, this algorithm does not follow a trip’s further
downstream stops.
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• Unlike the TBA* algorithm, TDIMA* updates the link labels as opposed to
node labels and thereby accounts for node switching penalties in an easier
fashion.

Network Representation 
As noted, the multimodal network used in the TDIMA* algorithm has three layers: 

• Transit
• Walking
• Vehicular traffic

The transit network is constructed using GTFS. First, a “typical” weekday is chosen 
to detect the used service IDs from the “calendar” file. The same service IDs are 
also seen in the “trips” file. Using these, the transit trips in service on that day are 
detected. Although every trip 𝑞 ∈ 𝑄 is associated with a route, in most major cities 
the routes have variations called “patterns,” 𝑝 ∈ 𝑃 (Furth and Day, 1985). Depending 
on the transit agency, patterns are properly and uniquely linked with a shape ID in 
an optional file. However, to guarantee consistency, the following method was used 
to identify patterns: Any unique sequence of stops/stations under a route is defined 
as a pattern. Thus, every transit trip exclusively belongs to one pattern 𝑞 ∈ 𝑄𝑝, and 
every pattern exclusively belongs to one route. The set 𝑄𝑝 is ordered by departure 
time. This is obtained from the “stop_times” file. 

Generation of the nodes 𝑁 is trivial—every used transit stop/station is a transit 
node. Similarly, any two consecutive node pair of a pattern form a transit link  
𝑖 ∈ 𝐴. After all the transit links are generated, an ordered set of links is generated 
for every pattern 𝑖 ∈ 𝐴𝑝. Conversely, on every link, a set of patterns 𝑝 ∈ 𝑃𝑖  is 
generated. Afterwards, the number 𝑠𝑖𝑝 is stored, which is the sequence number 
of link 𝑖 ∈ 𝐴𝑝 along pattern 𝑝 ∈ 𝑃𝑖. Finally, using the schedule information in the 
“stop_times” file, the arrival 𝑎𝑠

𝑞
𝑖𝑝 and departure times 𝑑𝑠

𝑞
𝑖𝑝 of a trip 𝑞 ∈ 𝑄𝑝 are 

associated with the sequence number 𝑠𝑖𝑝. 

The vehicular network can be obtained using any existing network data-
source available to the modeler. In this study, the existing Chicago Regional 
network data designed for POLARIS, an integrated activity-based modeling 
and traffic simulation software, were used (Auld et al., 2016). The walking links 
are derived from the vehicular traffic network and are segmented into smaller 
links whenever a transit stop/station is nearby. In other words, the walking layer 
initially is a partially duplicate layer of the vehicular network, where the link 
types are arterial or local (no ramps, highway, or freeway links are allowed). 
Afterwards, transit nodes are projected onto these links to segment the walking 
links and provide connectivity between the transit and vehicular traffic layer. 
Figure 4-1 is an illustration of the network representation. 
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As shown, the walking links run parallel with the vehicular network and provide 
connectivity between the vehicular and transit network. Walking through a 
transit node without boarding a vehicle is allowed. Since the sum of the lengths 
of the two segmented walking links equals to the length of the corresponding 
vehicular link, this does not cause any detouring. In case of rail stations far away 
from any vehicular link, additional walking links are added. 

Time-Dependent Intermodal A* Algorithm 
The following notations are used throughout the rest of this section:

Sets 

𝑁: 	 Set of nodes
𝐴: 	 Set of links
𝑂: 	 Set of origin links; 𝑂 ⊆ 𝐴
𝐷: 	 Set of destination links; 𝐷 ⊆ 𝐴
𝐴+𝑖 : 	 Set of successor links of link 𝑖 ∈ 𝐴
𝑃: 	 Set of patterns
𝑃𝑖: 	 Set of patterns that pass-through link 𝑖 ∈ 𝐴; 𝑃𝑖 ⊆ 𝑃
𝐴𝑝: 	 Ordered set of links that belong to pattern 𝑝 ∈ 𝑃; links are ordered by 		
	 their sequence traversal by the pattern 
𝑄: 	 Set of trips

Figure 4-1  Multimodal network representation 



FEDERAL TRANSIT ADMINISTRATION 	 80

SECTION  | 4

𝑄𝑝: Ordered set of trips that belong to pattern 𝑝 ∈ 𝑃; trips are ordered by 
departure time

 Ω: Set of scan-eligible links; Ω ⊆ 𝐴

Parameters 	
𝛿: 	 Traveler’s departure time from origin
𝑥: 	 Base transfer penalty 
𝑤𝜔: Weight of time spent waiting
𝑤𝜅: Weight of time spent walking
𝑤𝜆: Weight of time spent in a transit vehicle
𝑤𝜇: Weight of time spent in a traffic vehicle
𝑈𝜔: Upper bound on individual waiting time
𝑈𝜅: Upper bound on total walking time
𝑈𝜇: Upper bound on total time in a traffic vehicle
𝑚𝑖: Type of link 𝑖 ∈ 𝐴; 𝑚𝑖 ∈ {Transit, Vehicular, Walk} 
𝑙𝑖: Length of link 𝑖 ∈ 𝐴
𝑣𝜅: Walking speed
𝜏𝑖(𝑡): Time-dependent travel time on a vehicular link 𝑖 ∈ 𝐴 at time 𝑡
𝜏𝑖: Travel time on a walking link; 𝜏𝑖 = 𝑙𝑖⁄𝑣𝜅

𝜓𝑖𝑗(𝑡): Time-dependent switching delay from link 𝑖 ∈ 𝐴 at time 𝑡 to link 𝑗 ∈  𝐴
𝑠𝑖𝑝: 	 Sequence number of link 𝑖 ∈ 𝐴𝑝 along pattern 𝑝 ∈ 𝑃𝑖

𝑠: 	 A generic sequence number
𝑎𝑠𝑞𝑖𝑝: Arrival time of trip 𝑞 ∈ 𝑄𝑝 at the upstream node of link 𝑖 ∈ 𝐴𝑝; 𝑝 ∈ 𝑃𝑖 and 

𝑠𝑖𝑝 is the sequence number of link 𝑖 ∈ 𝐴𝑝 along pattern 𝑝 ∈ 𝑃𝑖
𝑑𝑠𝑞𝑖𝑝: Departure time of trip 𝑞 ∈ 𝑄𝑝 from the upstream node of link 𝑖 ∈ 𝐴𝑝; 𝑝 ∈ 	
	 𝑃𝑖 and 𝑠𝑖𝑝 is the sequence number of link 𝑖 ∈ 𝐴𝑝 along pattern 𝑝 ∈ 𝑃𝑖

𝐻𝑖: Estimated cost label from link 𝑖 ∈ 𝐴 to destination

Decision Variables 
𝜋𝑖: 	 Selected predecessor link of link 𝑖 ∈ 𝐴+𝜋𝑖  
𝜑𝑖: Selected trip on link 𝑖 ∈ 𝐴; 𝜑𝑖 ∈ 𝑄𝑝 and 𝑝 ∈ 𝑃𝑖 

Endogenous Variables 
𝐺𝑖: 	 Generalized cost label from origin to link 𝑖 ∈ 𝐴
𝐹𝑖: 	 Total cost label from origin to destination through link 𝑖 ∈ 𝐴
𝜌𝑖: 	 Total number of waiting occurrences from origin to link 𝑖 ∈ 𝐴
𝜔𝑖: Total waiting time from origin to link 𝑖 ∈ 𝐴
𝜒𝑖: 	 Total transfer penalty from origin to link 𝑖 ∈ 𝐴
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𝜅𝑖: 	 Total walking time from origin to link 𝑖 ∈ 𝐴
𝜆𝑖: 	 Total in-transit-vehicle time from origin to link 𝑖 
∈ 𝐴, 𝜇𝑖: 	Total in-traffic-vehicle time from origin to link 𝑖 
∈ 𝐴, 𝛼𝑖: 	Arrival time at the downstream node of link 𝑖 ∈ 𝐴

Algorithm 
It is important to emphasize that the transit portion of the TDIMA* algorithm is 
similar to Khani and Noh’s (2015) TBA* algorithm except the downstream stops 
(links) of a trip are not followed. The presented algorithm is link-based. Any 
label such as the generalized cost 𝐺𝑖 is associated with the downstream node of 
the link. In other words, 𝐺𝑖 is the generalized cost of the path from the upstream 
node of the origin link to the downstream node of link 𝑖 ∈ 𝐴. 

This algorithm was developed under the framework of POLARIS, although it 
serves as a stand-alone tool as well. In POLARIS, a trip starts and terminates 
at designated activity locations as opposed to TAZs. Every activity location is 
projected on a walking link and a vehicular link. To prevent unnecessary U-turns 
or unrealistic walking back and forth, the reverse links are also associated with 
the given activity location. As a result, the algorithm query is from a set of origin 
links 𝑖 ∈ 𝑂 (one or two elements) to a set of destination links 𝑖 ∈ 𝐷 (one or two 
elements). If the selected mode is PNR/KNR, the mode of the origin links 𝑚𝑖 = 
Vehicular, and the mode of the destination links 𝑚𝑖 = Walking. If the selected 
mode is transit, the mode of the origin and destination links 𝑚𝑖 = Walking. 

This algorithm uses several upper bounds and conditionals for improved 
computational performance and realism. All cost components such as waiting, 
walking, etc., are weighted. These weights 𝑤, and the walk-speed 𝑣𝜅 are traveler-
dependent, which enables the modeling of traveler heterogeneity. 

The version presented in the following pseudo-code is for walk-to-transit 
and drive-to-transit modes, e.g., PNR and KNR. Figure 4-2 presents the main 
algorithm. The labels 𝐺𝑖 and 𝐹𝑖 of every link 𝑖 ∈ 𝐴\𝑂 are set to infinity. The label 
𝐺𝑖 of every origin link 𝑖 ∈ 𝑂 is set based on the mode (walking or driving). It is the 
cost of traversing the link based on the weighted travel time of walking 𝑤𝜅𝜏𝑖 or 
weighted time-dependent travel time of driving 𝑤𝜇𝜏𝑖(𝛿) at the departure time 𝛿. 
Similarly, total walking time 𝜅𝑖, total in-vehicle-traffic time 𝜇𝑖, and the arrival time 
at the downstream node 𝛼𝑖 are updated. 
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Figure 4-2  Pseudo-code for Time-Dependent Intermodal A* (TDIMA*) algorithm 



	 FEDERAL TRANSIT ADMINISTRATION 	 83

SECTION  | 4

𝐻𝑖 is the pre-calculated heuristic cost from the downstream node of a given link 
𝑖 ∈ 𝐴 to the destination links 𝑖′ ∈ 𝐷. The algorithm selects the link with the least 
total cost 𝐹𝑖 = 𝐺𝑖 + 𝐻𝑖. If 𝐻𝑖 = 0, the algorithm becomes a conventional label-
setting algorithm (Dijkstra, 1959), where the link with the minimum cost from 
the origin is selected. Although this guarantees an exact solution, the algorithm 
would not be “guided” towards the destination; hence, a longer computational 
time. Hence, a heuristic cost 𝐻𝑖 is used, and the algorithm picks the link with 
the minimum total cost 𝐹𝑖. 𝐹𝑖 is the cost of a path from origin to destination 
that traverses link 𝑖 ∈ 𝐴 (Hart et al., 1968). The cost 𝐺𝑖 from origin to link 𝑖 ∈ 𝐴 
is exact, whereas the cost 𝐻𝑖 from link 𝑖 ∈ 𝐴 to destination is an estimate. The 
higher the estimate, the faster the code reaches the destination with a caveat: If 
it is inadmissibly high, the solution is not the least cost path. Still, the final cost 
at the destination link is 𝐹𝑖 = 𝐺𝑖, where 𝐻𝑖 = 0. This means that the final cost is 
the ‘exact’ cost of a sub-optimal path. Traditionally, 𝐻𝑖 is the Euclidean distance 
divided by the maximum possible speed, which is an admissible lower bound 
(Hart et al., 1968). Similar to Khani, Hickman, and Noh (2015), the results of a 
static label setting algorithm for the estimated cost 𝐻𝑖 is used. The travel times 
on the static network are the minimum observed travel time on a link. Waiting 
times, transfer or turn penalties are not included. Hence, the cost on a given link 
in this static network can never be higher than the cost of that link in the actual 
network, which makes the algorithm admissible (Khani, Hickman, and Noh, 
2015). Instead of performing the label setting algorithm from every link to every 
link, performed is the algorithm from every traffic analysis zone (TAZ) to every 
link in order to reduce computational time. 

Hence, 𝐻𝑖 is the heuristic cost from link 𝑖’s zone to the destination link. However, 
the zonal aggregation is for the heuristic cost 𝐻𝑖 calculation only. The TDIMA* 
algorithm calculates an exact cost 𝐺𝑖 from an origin location to the link 𝑖 ∈ 𝐴 
in question until eventually that link is one of the (two) destination links 𝑖 ∈ 𝐷. 
Back-tracking recursively from that link terminates in one of the origin links. 
Hence, the algorithm finds the least cost path between an origin-destination 
pair at a given departure time, where both the optimal origin and destination 
links are implicitly selected in the process. 

Once the link 𝑖 = argmin{𝐹𝑗} with the minimum total label is selected, the 
algorithm starts scanning the downstream links 𝑗 ∈  𝐴+𝑖 . If the downstream 
mode 𝑚𝑗 = Transit, then Evaluate_Transit_Neighbor(i,j) is called (see Figure 4-3). 
If the downstream mode 𝑚𝑗 = Walk, then Evaluate_Non_Transit_Neighbor(i,j) is 
called (see Figure 4-4). Finally, if both the current mode 𝑚𝑖 = Vehicular and 𝑚𝑗 = 
Vehicular, then Evaluate_ Non_Transit_Neighbor(i,j) is called again. The last two 
conditions are proper for PNR and KNR trips. No vehicle can be generated in the 
middle of the journey. However, this constraint is relaxed if the intermodal trip 
allows for taking a taxi or other services. The algorithm terminates ideally once 
a destination link 𝑖 ∈ 𝐷 is reached, or unideally when Ω becomes empty, i.e., no 
path could be found between the two location pairs (𝑂, 𝐷) at departure time 𝛿.
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In Evaluate_Transit_Neighbor(i,j) subroutine, the algorithm loops over all the 
patterns 𝑝 ∈ 𝑃𝑗 that serve on the successor link 𝑗 ∈  𝐴+𝑖 . For a given pattern 𝑝 ∈ 
𝑃𝑗, it loops over all the trips 𝑞 ∈ 𝑄𝑝 of that pattern. First, the sequence number 
𝑠𝑗𝑝 of link 𝑗 ∈  𝐴𝑝 along pattern 𝑝 ∈ 𝑃𝑗 is obtained. For simplicity, we call it 𝑠. By 
using 𝑠, the algorithm obtains the departure time 𝑑𝑠

𝑞 and calculates the waiting 
time 𝜔′ = 𝑑𝑠

𝑞 − 𝛼𝑖. If 𝜔′ < 0, the trip is skipped. If 𝜔′ is larger than the traveler-
specific upper bound 𝑈𝜔, then all the trips departing later than 𝑞 will exceed the 
upper bound. Hence, no further scanning of this pattern is required. In case trip 
𝑞 in question is the same as the arrival trip 𝜑𝑖, then there is no waiting. Hence 
the candidate waiting count 𝜌′ is the same as the waiting count 𝜌𝑖. The in-transit-
vehicle travel time of the link is set to the difference between the arrival time 𝑎𝑠

𝑞+1 
at the downstream node of link 𝑗 and the current time 𝛼𝑖. Otherwise, the traveler 
is waiting to board, the waiting count 𝜌′ = 𝜌𝑖 + 1, and the in-transit-vehicle travel 
time 𝜇′ is the difference between the arrival time 𝑎𝑠

𝑞
+1 at the downstream node of 

link 𝑗 and the departure time 𝑑𝑠
𝑞 from the upstream node of link 𝑗. 

The algorithm keeps track of the total number of transfers max{0, 𝜌′ − 1} and 
progressively penalizes transfers using 𝜒′ = max{0,𝜌′ − 1} 𝑥. That is the first 
transfer is penalized by 𝑥, the second by 2𝑥, and so on. Hence, a trip with two 
transfers has a total transfer penalty of 3𝑥, whereas a trip with three transfers 
has a total transfer penalty of 6𝑥. Interested readers are referred to Verbas 
(2014 and Verbas and Mahmassani (2015) for details. The candidate label 𝐺′ is 
the weighted sum of the waiting time ω′, in-transit-vehicle time 𝜇′, the transfer 
penalty 𝜒′, and the label 𝐺𝑖 of the current link 𝑖. If 𝐺′ < 𝐺𝑗 then link 𝑗 should be 
traversed on trip 𝜑𝑗 = 𝑞 and be preceded by link 𝜋𝑗 = 𝑖. The arrival time is set to 
𝛼𝑗 = 𝑎𝑠

𝑞
+1. All the labels are updated as seen in Figure 4-3. 

As seen in Figure 4-4, if the successor link 𝑗’s mode 𝒎𝒋 = 𝐖𝐚𝐥𝐤, then the algorithm 
first checks whether the potential cumulative walking time 𝜅𝑖 + 𝜏𝑗 is larger than 
the traveler-specific upper bound 𝑈𝜅. If it is true, the algorithm skips that link. If 
not, the algorithm calculates the candidate label 𝐺′, the candidate arrival time 𝛼′, 
the candidate total walking time 𝜅′ and the candidate intraffic-vehicle time 𝜇′. 

If the successor link 𝑗’s mode 𝒎𝒋 = 𝐕𝐞𝐡𝐢𝐜𝐮𝐥𝐚𝐫, the time-dependent travel time 
has two components: the time-dependent switching delay 𝜓𝑖𝑗(𝛼𝑖) at time 𝛼𝑖 and 
the time-dependent link travel time 𝜏𝑖 (𝛼𝑖 + 𝜓𝑖𝑗(𝛼𝑖)) at time 𝛼𝑖 + 𝜓𝑖𝑗(𝛼𝑖), i.e., after 
the turn movement is completed. 

Similar to walking, the algorithm checks whether the cumulative driving time 
exceeds the upper bound 𝑈𝜇 on driving. This prevents the algorithm from 
excessive driving almost all the way up to the destination and then taking 
transit for just a few blocks. If the upper bound is not exceeded, the algorithm 
calculates the candidate label 𝐺′, the candidate arrival time 𝛼′, the candidate 
total walking time 𝜅′ and the candidate in-traffic-vehicle time 𝜇′. 

If 𝐺′ < 𝐺𝑗 then link 𝑗 should be preceded by link 𝜋𝑗 = 𝑖. All the labels are updated 
as seen in Figure 4-4. 
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Figure 4-3  Subroutine for evaluating transit neighbor link
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Figure 4-4  Subroutine for evaluating non-transit neighbor link 
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Validation Results 
The Time-Dependent Intermodal A* algorithm implementation was verified 
against observed trips drawn from the Chicago Metropolitan Agency for Planning 
(CMAP) 2008 Travel Tracker survey. A multimodal Chicago regional network was 
generated using the existing POLARIS (Auld et al., 2016) vehicular network and 
the GTFS data for the three transit agencies—CTA (urban bus and rail), PACE 
(suburban bus), and Metra (commuter rail). The network properties are as follows: 

•	 54,028 nodes 
	– 35,077 transit 
	– 18,951 vehicular 

•	 217,119 links 
	– 37,642 transit 
	– 123,000 walking 
	– 56,477 vehicular 

•	 173,236 activity locations 
•	 1,961 traffic analysis zones 
•	 344 transit routes 
•	 2,098 transit patterns 
•	 28,138 transit trips 

The validation trips were drawn from the set of multimodal trips observed in the 
survey, i.e., a trip that involved transit at any point and at least one non-walking 
leg. This subset was further limited to multimodal trips where the access mode was 
PNR/KNR trips. Of a total set of 6,500 valid transit trips, 556 met this criterion and 
passed a set of data validity checks for use in the validation analysis. A subset of 
180 randomly-selected trips was then routed from origin coordinate to destination 
coordinate at the specified departure time in three different routing engines: 

•	 TDIMA* algorithm using PNR mode 
•	 Google Directions API using transit mode, as it does not have PNR/KNR 

option 
•	 Regional Transit Authority (RTA) trip planner using PNR mode, as it provides 

PNR directions

The reason for selecting 180 trips is due to the need to input trips manually into 
the RTA router. Results from the two online direction finders for a hypothetical 
trip are shown in Figure 4-5, where significant differences in overall trip time 
can be observed. The main reason behind this difference is that the Google 
router can have only walking as the access mode to transit, whereas the RTA 
trip planner is able to find a PNR route which selects from a set of prespecified 
parking locations. On the other hand, the TDIMA* algorithm is much more 
flexible in the sense that it does not limit the parking locations. 
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 The TDIMA* algorithm used the following weights and upper bounds: 

• Base transfer penalty; 𝑥 = 5 min
• Weight of time spent waiting; 𝑤𝜔 = 2
• Weight of time spent walking; 𝑤𝜅 = 2
• Weight of time spent in a transit vehicle; 𝑤𝜆 = 1
• Weight of time spent in a traffic vehicle, 𝑤𝜇 = 3
• Upper bound on individual waiting time; 𝑈𝜔 = 60 min
• Upper bound on total walking time; 𝑈𝜅 = 60 min; with walking speed 𝑣𝜅

= 1.39 m/s; 𝑈𝜅 = 5 km in distance
• Upper bound on total time in a traffic vehicle; 𝑈𝜇 = 60 min

The results for each trip were compared in terms of total travel time, total 
walking/driving (non-transit) time, total waiting time (including waiting during 
transfers), and total in-transit-vehicle time (see Figure 4-6). Unknown are which 
upper bounds, weights, or transfer penalties are used by the online algorithms, 
and in case they are used, the values thereof. However, the Google Directions 
API does not return results for about 20% of the trips. Hence, it can be inferred 
that there are limits on walking. Overall, the new algorithm significantly 
outperforms the online routing engines. Although unknown are the details 
of the online routers in terms of upper bounds and weights, results indicate 
that the TDIMA* algorithm outperforms them in terms of total travel, waiting, 
transit, and non-transit times. Hence, there is no trade-off between the cost 
components across different algorithms. The TDIMA* algorithm is mostly non-
dominated. 

Figure 4-5  Online-routing results from (left) Google API and (right) RTA Trip Planner (Map Data © 2018 Google)



FEDERAL TRANSIT ADMINISTRATION 	 89

SECTION  | 4

Figure 4-6  Comparison of TDIMA* results to online routers 
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Conclusion 
A Time-Dependent Intermodal A* (TDIMA*) algorithm was introduced and 
described. The algorithm works on a multimodal network with transit, 
walking, and vehicular network links. The TDIMA* algorithm finds paths for the 
three major modes (transit, walking, driving) and any feasible combination 
thereof (e.g., PNR). For improved realism, turn penalties, progressive transfer 
penalties, upper bounds on waiting, walking, and driving (where necessary) are 
incorporated. The algorithm was validated on the large-scale Chicago regional 
network using real-world trips, and the results were compared with two online 
services (Google Directions API and RTA Trip Planner). The results provided by 
the TDIMA* for PNR trips are significantly better than those provided by either 
service. 

As a next step, the algorithm will incorporate seating and standing capacity 
penalties, as well as monetary costs, e.g., tolls, parking fees, and transit 
fare. Although this algorithm can serve as a stand-alone routing tool, it is 
designed as an integral component of POLARIS. This integration will allow for 
comprehensive modeling capabilities such as supply-side interactions between 
different modes, abandoning the use of skims for mode choice and activity 
scheduling, and en-route mode switching and re-routing. 
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Bayesian Forecast of Transit Demand5  
Introduction 
Background 
The notion of mobility was first introduced around 2009, and since then, it has 
gradually incorporated individual practices and lifestyles into the analysis of 
transport demand, which made it necessary to redefine the meaning of the 
term. The aim of technically optimizing the straightforward spatial movement of 
goods and individuals (i.e., planning, flow, traffic, vehicle technology, etc.) has 
been supplemented, or even replaced, by the objective of obtaining a detailed 
understanding of the variation in individual ability to travel (accessibility), 
individual experience of daily travel conditions (comfort, sustainability), and/or 
even the role that mobility plays in individual lifestyles in terms of both actual 
and possible interactions. Consequently, mobility is now studied by economists, 
sociologists, urban planners, geographers, and data scientists. 

Traditionally, the analysis of mobility is based on travel surveys (OD surveys, 
household travel surveys). However, these surveys tend to be expensive and 
consequently are undertaken fairly infrequently, which means any current 
developments and the public policies that aim to influence them are not 
closely monitored. In recent years, there has been increased interest in using 
completely anonymous data from real-time smart card collection systems to 
better understand the behavioral habits of public transport passengers. Such 
use of smart card data to generate insights into passengers’ travel practices 
and to identify or predict travel patterns becomes a very active research area. 
In particular, the problem of making inference on the arrival time and modeling 
dynamic, real-time traffic OD to estimate demand flow of a bus network 
based on either link count or smart card data, have been covered extensively 
in the literature over the last twenty years. Novel methods for modeling and 
analyzing the dynamic OD demand flow of a large-scale public bus network 
include passenger clustering with Gaussian mixture generative model using 
smart card data over five-year span and taking into account the continuous 
representation of time and the usage habits of passengers and their behavioral 
changes over time, Bayesian approach with Markov Chain Monte Carlo (MCMC) 
simulation methods, and single-level time-dependent path flow estimation 
model with constraints on traffic flow dynamics and updated states. Due to 
inherent structural features in the problems of inference about OD demand 
flow during disruptive events such as flooding, tornadoes, blizzards, and man-
made emergencies, a Bayesian model and method are presented for effectively 

5 Authored by Vadim Sokolov and Tuan Le, GMU. Acknowledged for their contributions are Dr. Hubert 
Ley, Director of TRACC at Argonne National Laboratory; James Garner, Manager of Research and 
Analysis Department at Pace; and Dr. Kathryn Laskey. 



FEDERAL TRANSIT ADMINISTRATION 	 92

SECTION  |  5

analyzing transit data. The objective for this project includes four goals—1) 
developing a statistical model incorporating prior knowledge about the 
historical demand and the noise of the number of on/off-boarding passengers 
(ON/OFF count) at each stop to estimate demand between individual (or groups 
of) bus stops; 2) based on estimated demand, predicting the crowded zone-level 
destinations of riders; 3) obtaining the estimated populations’ means of traffic 
flows between any two zones; and 4) analyzing rider travel patterns based on 
two datasets (APC and Ventra) and documenting them. 

Motivation and Problem Statement 
Due to an increasing number of PACE bus riders annually, its managers sought 
to improve their fleet allocation (re-routing and re-scheduling its buses, given 
that it has a limited number of buses). To do this effectively, they wanted a 
better demand forecasting tool to predict the future traffic flows. This tool 
was expected to incorporate their prior knowledge on historical demand of 
riders and capture the uncertainty in ON/OFF counts data into its forecasting 
process. Since Oan OD matrix is the most fundamental representation of 
demand between bus stops (or groups of bus stops), PACE’s managers sought 
a statistical model to estimate this matrix accurately. The estimated OD matrix 
would be used by PACE’s managers as a fundamental input for improving 
POLARIS, the integrated traffic simulation model supporting PACE managers in 
re-routing and re-scheduling buses to meet demand of riders. 

A plausible approach is using Bayes’ formula to incorporate prior knowledge 
on historical demand and capture the uncertainty in ON/OFF counts data. With 
this approach, after obtaining the estimated demand as well as its distributions, 
crowded zone-level destinations can be predicted, and the estimated 
population means of traffic flows can be obtained. 

Objectives, Scope, and Deliverables 
To achieve a unique goal of the PACE managers, the objective of this study 
included four major actions: 

• Develop a statistical model to estimate the OD matrix based on the two
historical datasets (APC and Ventra) obtained from PACE.

• Estimate population means of traffic flows based on the estimated results
by the statistical model.

• Predict the crowded “zone-level” destinations of riders based on the
estimated results.

• Analyze and document rider traveling patterns based on the APC and
Ventra datasets.

The scope of this study included performing data exploratory analysis on the 
APC dataset, which was available for 2015 and for October 2016, and the Ventra 
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dataset, which was available only for March 2016, and providing insights on 
rider travel pattern at different time variations. The Bayesian model used to 
estimate demand was considered only with two specific classes of distributions 
assigned to prior—likelihood (Normal-Normal, Poisson-Normal, Poisson-
Poisson, Normal-Poisson). These were selected based on the positive results of 
previous research work. Second, there exists an analytical solution in one case 
(Normal-Normal), which is helpful for comparing against the performance of the 
numerical solution in the case of Normal-Normal. 

Finally, the deliverables of this study include a detailed exploratory data 
analysis on analyzing rider travel patterns, a detailed introduction of Stan and 
its functionality, and simulation results of each of the four possible pairs of 
prior-likelihood to make a recommendation to PACE managers on the optimal 
pair of prior-likelihood for our Bayesian model (i.e., the pair whose estimated 
demand is closest to the simulated true demand over a time period of 365 days). 
The sensitivity analysis of the result given by the optimal pair of prior-likelihood 
with respect to priors and the variance parameter (represents noise in the 
COUNT data) of a specific distribution assigned to prior is also provided. 

Model Formulation, Assumptions and Limitations 
As the Bayesian model contains routing matrix in one of its parameters; a 
routing matrix in the context of this problem can be conveyed through a simple 
example—assume a bus network with only three stops, A, B and C, with exactly 
three routes. Assume data only on the number of people getting on at stop A 
and get off at stop C (see Figure 5-1). For the particular three-node network, 
the column labels denote all feasible routes in the order of 𝐴𝐵, 𝐵𝐶, 𝐴𝐶, and the 
two row labels are 𝐴𝑖𝑛 and 𝐶𝑜𝑢𝑡. For the first row, the (1,1) and (1,3) entries are 1 
because the first row denotes all possible destinations of people getting on at 
stop 𝐴 (so they would either get off at stop 𝐵 or stop 𝐶), which corresponds to 
column 𝐴𝐵 and 𝐴𝐶 (𝐵𝐶 are irrelevant in this case, since the first row 𝐴𝑖𝑛 denotes 
only routes starting from 𝐴). Similarly, for 𝐶𝑜𝑢𝑡, the (2,2) and (3,2) are 1 because 
those are all possible paths for riders to get off at stop 𝐶 (either they start from 𝐴 
or 𝐵, which corresponds to columns 𝐴𝐶 and 𝐵𝐶). The first entry in the same row 
corresponds to column 𝐴𝐵 is 0, because 𝐴𝐵 is irrelevant in this case. 

Routing Matrix 
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The above argument can be extended to a network with more than three nodes, 
the general form of the routing matrix is as follows: 

Figure 5-2  Relationship between variables 𝐝, 𝐜 and data 𝐀, 𝐝𝐡 

The probabilistic graphical model indicates the relationship between the given 
data (extracted from APC dataset), the demand variable 𝑑, and currently-
observed ON/OFF counts (𝑥). From the relationship between the data layer 
and the demand variable 𝑑 (meaning, given 𝑑ℎ, we can make inference on 
possible values of 𝑑) and between the demand variable 𝑑 and ON/OFF counts 
𝑥 (meaning, given 𝑑, we can make inference on possible values of 𝐶), denoted 
are the prior and likelihood distributions as 𝑃(𝑑|𝑑ℎ, 𝐴) and 𝑃(𝐶|𝑑). Now, our 
objective is to obtain 𝑃(𝑑|𝑑ℎ, 𝐶), which is the posterior 𝑑|𝑑ℎ,𝐶.

General Form of Routing Matrix 

Figure 5-1  General form of routing matrix for three-stop problem 
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Inspired by the success of the work by West and Tebaldi (1998), the fact that the 
ON/OFF counts data are discrete and the technical validity of Bayes’ formula, 
the three following assumptions are made: 

•	 Only two classes of distributions, specifically Poisson and Normal, are 
considered for prior and likelihood. 

•	 Counts data (𝑥) and demand (𝑑ℎ) are conditionally independent given 
historical demand (𝑑ℎ). The traffic flows of any two routes are independent. 

Under these assumptions, by applying Bayes’ formula twice, we obtain 

𝑃(𝑑| 𝑑ℎ, 𝑥) ∝ 𝑃(𝑥|𝑑)𝑃(𝑑|𝑑ℎ) 

The major difficulty for evaluating the posterior distribution 𝑃(𝑑| 𝑑ℎ, 𝑥) in the 
equation above is the non-existence of analytical formula for most pairs of 
prior—the likelihood (with the exception of Normal-Normal, in which case a 
Kalman Filter can be used to obtain a Normal distribution for the posterior, 
with closed-form formulas to compute mean and variance). However, if only 
considering Normal-Normal for prior-likelihood, we limit the flexibility and 
suitability of the model when taking into account the given APC dataset. 
Therefore, in most cases, Markov Chain Monte Carlo (MCMC) simulation is a 
powerful technique to obtain the posterior distribution of 𝑑|𝑑ℎ,𝐶, because it 
can deal with any distributions assigned to prior and likelihood. Now, by noting 
that 𝑥 =  𝐴𝑑, we can model the likelihood 𝑥|𝑑 ∼ 𝑃1(𝐴 ∗ 𝑑, 𝜎1) where 𝑃1 is either 
Normal or Poisson, and 𝜎1 is a vector accounting for the noise in the estimated 
demand 𝑑. Similarly, based on the methods used to collect the counts data in 
the APC dataset, the historical demand 𝑑ℎ most likely under-estimates the true 
demand. Therefore, the prior can be modeled as 𝑑|𝑑ℎ ∼ 𝑃2(𝑑ℎ, 𝜎2) where 𝑃2 is 
also Poisson or Normal, and 𝜎2 is a vector representing the difference between 
our historical demand 𝑑ℎ and true demand. 

Finally, the approach using Bayes’ formula and MCMC simulation as main 
tools has three major drawbacks. First, the assumed distributions for either 
prior or likelihood might not be true, which then leads to inaccurate posterior 
distribution if the Bayesian analysis is not robust. This also means the obtained 
posterior distribution is valid only with respect to specific class of distributions 
of prior-likelihood. Furthermore, the computational cost of MCMC is very high 
when working with high-dimensional data. Due to this limitation, MCMC is not 
scalable to very large-scaled networks with approximately one million nodes. 

Exploratory Data Analysis 
From PACE, the two datasets denoted as APC and Ventra were obtained, which 
contain data for all PACE bus rides. Together, these datasets have 71.18 million 
data points, with 16 common qualitative categories such as Latitude, Longitude, 
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Days of a Week, Route, Stop Name, ON, OFF (counts data) and Bus ID. PACE 
managers noted that the Counts data in the APC dataset were quite inaccurate, 
and sometime misleading, because there were certain days in which the sensors 
are malfunctional or the bus driver did not keep track of the counts correctly 
for cash-paid passengers. In addition, to comply with the regulatory and non-
discriminatory requirements, the buses must be assigned to different routes 
every day. 

APC Dataset 
The APC dataset was collected in two different time periods—October 2016 and 
the entire year of 2015 (equivalent to 365 days, from 01/01/2015 to 12/31/2015). 
There were three major differences between these datasets—the Trip Time 
column was included in the one-month data but not in the whole-year; the 
one-month dataset recorded trips made by only 63 buses departing from the 
same garage of PACE in the Northwest region of Chicago, but the second dataset 
included all 635 buses from the 9 garages located across the state; and third, for 
the one-month dataset, approximately 85% of the data were collected during 
weekdays. However, in both datasets, the counts data are noisy. 

Exploratory data analysis for the one-month dataset is as follows. Using the 
library packages tidyverse and ggplot2 and the groupby function in R, the 
average number of riders ON and OFF was computed across every hour of a 
day and bar plots were created to observe the trends throughout different 
hours (note that the dataset does not include data at 3:00 am). The result was 
interesting, as the highest average hourly APC ON occurred at 10:00 pm (= 
0.2758), and the lowest average hourly APC ON occurred at 1:00 am (= 0.2187). 
However, a different pattern was observed for the highest and lowest average 
APC OFF, which was at 11:00 pm (= 0.2831) and 4:00 am (= 0.2333). To check 
whether these differences were statistically significant or just due to noises in 
the data, the Mann-Whitney-Wilcoxon test was conducted using the function 
wilcox.test() in R, and the p-value = 0.0685 was obtained, which is greater than 
0.05, and the standard errors for average ON and OFF  are 0.2251 and 0.2518, 
respectively. This implies that we cannot reject the null hypothesis that the 
two groups came from non-identical populations, so the difference between 
average ON and average OFF at the above hours were mainly due to noise in the 
counts data. We then look at the total ON count to observe the most active time 
of the majority of riders. We used the ggplot() function to create the bar plot for 
the total APC ON across different hours of a day (see Figure 5-3) and observed 
that the early morning time period (6:00–7:00 am) is the most active time of 
riders, with very few riders traveling between midnight and 4:00 am. However, 
the peak time of total hourly APC ON and OFF are both are quite different from 
the average hourly APC ON. The reason is that at 10:00 pm when average hourly 
APC ON peaks, the amount of data collected is only equal to approximately 
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one-fifth that of data at 6:00 am, at which the total APC ON and OFF peak (= 
42483). Since average hourly APC ON at time t = total APC ON at time t divided 
by number of ON counts data collected at time t and the ratio between counts 
data at 10:00 pm and 6:00 am is larger than the ratio between total hourly APC 
ON at 10:00 pm and 6:00 am (5.035 > 42483/9863 = 4.307), we conclude that the 
substantial difference in the amount of data collected at 6:00 am and 10:00 pm 
cause the difference in the peak time of total APC ON vs. average APC ON. 

Figure 5-3  Distribution of average hourly APC ON and OFF (October 2016) 
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Figure 5-4  Distribution of total hourly APC ON and OFF (25 = 1:00 am, 26 = 
2:00 pm, October 2016) 
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Figure 5-5  Distribution of total hourly APC ON and OFF (25 = 1:00 am, 26 = 
2:00 pm,  October 2016) 
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Figure 5-6  Distribution of total APC ON per weekdays (October 2016) 

A similar analysis was conducted for the average APC ON and OFF per days of a 
week to observe the distributions of ON and OFF. The conclusion was that the 
same pattern holds for both average APC ON and OFF—the peak and trough 
days were both on Saturday and Monday, respectively. The absolute magnitudes 
were not substantially different—for average daily APC ON, the highest and 
lowest were 0.2960 and 0.2434, whereas that of APC OFF were 0.300 and 0.2457. 
Here, the averages were not much different because only high demand routes 
are served on the weekend. 

The Mann-Whitney-Wilcoxon test was then conducted using the wilcox.test() 
function in R to see if the difference between average APC ON and OFF were 
statistically significant. The standard errors obtained for average APC ON and 
OFF were 0.219 and 0.232, and the p-value obtained was 0.127, which is greater 
than 0.05. Thus, we cannot reject the null hypothesis that the average APC ON 
and OFF comes from an identical data distribution, so the minor difference 
between the highest and lowest average APC ON and OFF was due to the noise 
in the data. In addition, we also computed the total number of APC ON and 
OFF per days of a week and observed that Monday was the most active time 
of riders, evidenced by the highest APC ON and OFF (86,772 and 87,610), and 
Sunday was the most inactive time of riders with the lowest total APC ON and 
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OFF (34,246 and 34,091). Once again, the Mann-Whitney-Wilcoxon test was 
conducted to check if there was any statistical significance in the difference 
between highest total APC ON and average APC ON, as well as between highest 
and lowest total APC OFF. For total APC ON and OFF, the standard errors 
were 25.3 and 28.9 and the 𝑝 value for total vs. average APC ON and OFF were 
0.0417 and 0.0439, respectively. Since the p-values were both less than 0.05, 
the differences in total APC ON and average APC ON (as well as total APC OFF 
and average APC OFF) per days of a week were statistically significant at the 
95% confidence level. When conducting the same analysis and computing the 
standard error and 𝑝-value for t-test statistics with respect to the total daily 
APC ON and OFF, the above pattern still held, with weekday (Thursday, 10/19) 
at the highest number of riders and weekend (Sunday, 10/30) at the lowest 
number of riders (the standard errors for total daily APC ON and OFF in the 
month of October was 145.22 and 152.31. The 𝑝-values for total daily APC ON vs. 
total daily APC OFF were 0.067, which were greater than 0.05. This implies the 
difference in total daily APC ON and OFF were not statistically significant at the 
95% confidence level, and such difference was due to noise in counts data). 

To complete the analysis for this one-month APC dataset, the number of riders 
within a particular route per days of a week, hours of a day, and days of a year 
was examined. This was helpful to the managers at PACE because they could 
gain insight into the usage frequency of each route, which can help them in 
future planning if they want to eliminate certain low-usage route and re-route 
certain buses. First, we found that route 215 is used only two days per week 
(Thursday and Friday) and serves, on average, 240 riders per day. Second, 
route 237 was available only on Thursday, and very few people used that route 
(only 63 riders in October). Researching this particular route, we found that 
it operates for special events or serves riders taking long outbound trips to 
Chicago. As there was no large event occurring during October 2016 in Chicago, 
this explains why it manages, on average, approximately 2 riders per day in 
October. 

The same exploratory data analysis was conducted for the one-year APC dataset, 
which had 69.4 millions of rows and 18 columns. First, using the library dplyr and 
groupby function in R, we created a bar plot for the total number of riders across 
different days of a week and observed that the peak of total ON was on Tuesday 
and Wednesday, while the trough was on Sunday (see Figure 5-7). 

In addition, we examined the average APC ON across days of a week (total 
APC ON per particular day of a week/amount of data collected on the same 
day of the week in a year) to see if it had different pattern. The amount of 
data collected on the same day of a week in a year opposite pattern occurred: 
average APC ON peak on Sunday. We conducted the Mann-Whitney-Wilcoxon 
test to examine if the difference in the distribution between average and total 
APC ON across days of week was statistically significant. The standard errors 
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of average and total APC ON were 0.169 and 11,528, and the 𝑝-value = 0.045, 
which is less than 0.05, so the difference in the distribution between total 
and average APC ON was statistically significant at the 95% confidence level. 
We then observed the trends in the average and total monthly APC ON in the 
corresponding bar plots. The pattern was pretty much similar—both average 
and total monthly APC ON peaked in October, and the distribution of average 
and total monthly APC ON were both skewed to the left. This meant October was 
the most active month of riders (see Figures 5-9 and 5-10). Finally, regards to 
the total APC ON per days of year 2015, the peak was approximately 75,000 and 
occurred nearly in the middle of the year. The day-to-day variations were quite 
large, with the approximate range between 5,000 and 60,000 (see Figure 5-11. 
Note that the x-axis includes all days starting from 01/01/2015 to 12/31/2015). 

Figure 5-7  Total APC ON per day of week 

Figure 5-8  Average APC ON per day of week 



FEDERAL TRANSIT ADMINISTRATION 	 103

SECTION  |  5

Figure 5-9  Total APC ON per each month 

Figure 5-10  Average APC ON per each month 

Figure 5-11  Total APC ON per day of year (2015) 
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VENTRA Fare Card Dataset 
Technological advancements allow the transit authority in Chicago to issue a 
declining balance RFID-enabled card called Ventra, which allows passengers 
to add an unlimited number of ride passes into their card for any time period. 
Moreover, passengers can transfer between different transit agencies (CTA 
and PACE, PACE and Metra, etc.) without having to purchase a new fare, unlike 
the old fare payment method. These features significantly help improve user 
experience for frequent riders and/or commuters, which, in turn, encourages 
more people in the area to use public transportation for getting around the city. 
Note that the Ventra dataset did not have the OFF counts (unlike APC dataset). 
However, the Ventra dataset also contained information that was not available 
in the APC dataset such as passenger transaction history and transfer points 
and customer trip types. This information was not collected previously because 
the old payment methods could not obtain them without affecting the rider user 
experience negatively. 

The Ventra dataset was available for March 2016 and included buses coming 
from all nine garages of PACE (unlike the one-month APC dataset, which only 
covered buses coming from the Northwest garage of PACE). The dataset had 
88 columns for each observation, for a total number of 404,643 observations. 
For the purpose of data manipulation, we chose only columns that were 
crucial to perform the exploratory data analysis—location information, trip 
start time, direction of bus trips,  hour, types of trips riders made, bus stop 
number, number of on-boarding riders, specific route a bus covers, and status of 
transactions recorded from the card swipe. 

Repeating the same steps as with the APC datasets above, we first computed 
the total and average ON across different hours and created the bar plots to 
observe the trends in the distributions of these two quantities. For the Ventra 
dataset, the "COUNT" data were available for every hour of a day (unlike the APC 
dataset, which did not have count data at 3:00 am). Once again, the average ON 
count at time t was computed with the formula (total ON count at time t/total 
munt of ON count data at time t).

After creating the bar plots for the average and total ON count across hours of 
a day, the following trends were observed: at time 2:00 am, the average "ON" 
count peaked (= 2.20822 riders) and troughed at 4:00 am (= 1.1172 riders). The 
total ON count peaked at 3:00 pm (= 54,859 "ON" riders) and troughed at 1:00 
am (= 225 "ON" riders). To verify if the difference was statistically significant, we 
conducted the Mann-Whitney-Wilcoxon test using wilcox.test() function in R. 
The standard errors obtained for total and average ON counts were 358.17 and 
1.451, and the 𝑝-value was 0.0317, which is less than 0.05. Thus, the difference 
between total and average ON count was statistically significant. Finally, we 
observed that the distribution of total hourly "ON" count was similar to the 
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combination of two Normal distributions (one for the morning–noon period and 
one for the afternoon–midnight period); the distribution of average hourly "ON" 
count looked similar to the Poisson distribution. 

For the total and average "ON" count per days of a week, the trends observed 
from the bar plots were similar to those observed in the two APC datasets. 
The distribution of average ON count per days of a week peaked on Saturday 
(= 1.3941 riders) and troughed on weekday (= 1.3088 riders), while that of total 
ON counts peaked on Tuesday (= 105,647 riders) and troughed on Sunday (= 
16,513 riders). The Mann-Whitney-Wilcoxon test was conducted once again and 
gave the standard errors for total and average as 11251.72 and 𝑝-value = 0.0415, 
which was less than 0.05. Thus, the difference in total and average ON counts 
was statistically significant. Finally, the distributions of the total ON counts per 
each day of March were very similar to that of the total ON counts per days of a 
week, as it peaked on weekday (Tuesday) and troughed on weekend (Sunday). 
The most active time for riders was Tuesday. 

Bayesian Model 
The Bayesian model was demonstrated previously to obtain the posterior 
distribution of 𝑑|𝑑ℎ,𝑥, with 𝑑ℎ and 𝑥 as data from the APC dataset in 2015. This 
was equivalent to compute 𝑃(𝑥|𝑑)𝑃(𝑑|𝑑ℎ), where prior-likelihood are among 
four possible choices. The first step was recovering the historical demand 𝑑ℎ, 
which was the solution to the system of linear equations 𝐴𝑑ℎ = 𝑥ℎ, where 𝐴 is 
the routing matrix between individual bus stops. This system of linear equations 
was inconsistent, so it did not have unique solution. Therefore, we employed the 
least-squares method with the nnls package in R to solve for the non-negative 
solution 𝑑ℎ that minimizes ||𝐴𝑑ℎ − 𝑥||2

2. Unfortunately, this package was unable 
to handle the size of matrix 𝐴. To resolve this scaling issue, a common way is 
to divide the maps into zones and group bus stops in the same zones together. 
Given the stopzone.csv file that contained the column ZONE, where each bus 
stop was mapped into an unique zone using their lat-lon pair (the region was 
divided into 1993 different polygon zones), we used the leftjoin() function in R 
to assign the zones to each bus stop based on their common geonodeID. We 
then aggregated the total ON counts of all stops within the same zones and 
reconstructed the zone-level routing matrix 𝐴. Dimensionalities of 𝐴 were 
reduced to the size of hundreds × hundreds. Using the same nnls package, we 
recovered the non-negative zone-level solution 𝑑ℎ that minimized ||𝐴𝑑ℎ − 𝑥||2

2 
(by doing this, we implicitly relaxed that the constraint 𝑑ℎ must be integer). This 
𝑑ℎ then was chosen to be the rate 𝜆 of the Poisson distribution when assigning 
to the prior or likelihood. 

Stan, a Probabilistic Programming Language 
To specify the data, the prior and likelihood in our Bayesian model, the 
parameter 𝑑, and to compute the Bayesian inference for continuous-variable 
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models through MCMC simulation, we extensively used Stan, a C++ program 
to perform Bayesian inference. A Stan program makes inference by computing 
directly the log-posterior density function over parameters conditioned on 
specified data and constants. The result is a set of posterior simulations of 
the parameters in the model (or a point estimate, if Stan is set to optimize). 
Stan differs from BUGS and JAGS in two ways: first, Stan is based on a new 
probabilistic programming language that is more flexible and expressive than 
the declarative graphical modeling languages underlying BUGS or JAGS, in 
ways such as declaring variables with types and supporting local variables 
and conditional statements. Second, Stan’s MCMC simulation is based on 
Hamiltonian Monte Carlo (HMC), a more efficient and robust sampler than Gibbs 
sampling or Metropolis-Hastings for models with complex posteriors. Stan has 
multiple interfaces for command line shell (cmdstan), for Python (pystan), and 
for R (library rstan). 

A typical Stan program includes multiple blocks, and each block serves a 
unique purpose. Such blocks must be specified in the same order as follows. A 
Stan program always starts with the data block (unless a program has a user-
defined function, then those functions must be specified before the data block), 
which declares the data (double types) required to fit the model. From the 
modeling approach, this is different when comparing to BUGS and JAGS, which 
determines which variables are data and which are parameters at run time 
based on the shape of the data input to them. Thanks to these declarations, 
Stan compiles a much more efficient code (the underlying language supporting 
Stan’s compiling is C++, which compiles data variables as double types much 
faster). The next (optional) block is transformed data block, which may be 
used to define new variables that can be computed based on the data. This 
block is executed during construction, after the data is read in (note that the 
transformed data variables can only be used after they are declared). Next 
is the parameter block, which defines the parameters we are interested in 
finding the posterior distribution and/or point estimate. This block is executed 
every time the log density is evaluated. The probability distribution defined 
by a Stan program works with unconstrained support (i.e., no points of zero 
probability), so for variables declared with constrained support, they are 
implicitly transformed to an unconstrained space over which the model block is 
defined. These unconstrained parameters are then inverse transformed back to 
satisfy their constraints before executing any statements in the model block. To 
account for this change of variables, the log absolute Jacobian determinant of 
the inverse transform is added to the overall log density. No validation required 
for this parameter block. Next is the (optional) transformed parameters block, 
which is executed after the parameter block. Constraints are validated after 
all statements defining the transformed parameters have executed. If the 
constraints are not satisfied, the execution of the log density function is halted. 
Next is the model block, which is to define the log density on the constrained 
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parameter space. It can contain as many sampling statements as possible, 
but every such statements are translated to the log density functions (e.g., if 
parameter ’beta ∼ normal(0,1)’ has the exact same effect as incrementing log 
density directly with the value of the log probability density function for the 
Normal distribution using the target increment statement: target += normal-
lpdf(beta|0, 1)). Stan does not require proper priors, but if the posterior is 
improper, Stan will halt with an error message. Finally, an (optional) generated 
quantities block allows values that depend on parameters and data, and might 
be used to compute predictive inferences. Figure 5-12 is an example of a Stan 
model in vectorization form that contains three must-have blocks—data block, 
parameter block, and model block. 

Figure 5-12  Stan program modeling linear regression with unknown coefficients 

Finally, despite its strength in computing the log-posterior density to perform 
Bayesian inference, the main limitation of Stan is that it does not allow inference 
for discrete parameters. Stan allows discrete data and discrete-data models 
such as logistic regressions, but it cannot perform inference for discrete 
unknowns. This explains why in the approach for obtaining the posterior 
distribution when the prior follows Poisson distribution, we have to use Normal 
distribution with equal mean and approximately equal variance to approximate 
the original Poisson distribution. 

The following four subsections contain the simulation results given by MCMC 
(and analytical solution given by Kalman Filer for the Normal-Normal case) 
for all four pairs of prior-likelihood. Each MCMC simulation contain estimated 
demand in 365 days. For each day, the estimated demand vector 𝑑 has hundreds 
of parameters to sample. Notice that some pairs of prior-likelihood provide very 
good estimations between certain zone-level origin-destination pairs on some 
days, but did very poorly on other days. Other pairs consistently provide good 
estimated demand 𝑑 over the entire 365 days, and such pairs are the ones that 
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should be chosen by the project sponsor. The comparison plots shown below 
mainly focus on the days on which certain pairs of prior-likelihood provided bad 
results. For the pairs that provided consistently good estimated results across 
all days, the comparison plots shown over certain days were chosen randomly. 
Note that the label on the 𝑥-axis only stands for the ordering of different zone 
pairs on a particular day (e.g., zone index = 100 corresponds to zone pairs 
1795−1375 on day 15). 

Normal-Normal (Prior-Likelihood) 
The prior and likelihood follow 𝑁(𝑑, 𝜎2) and 𝑁(𝐴𝑑 +  𝜖1,𝜎1) where 𝜖1 is randomly 
drawn from 𝑈(0,20) indicates the random difference between 𝐴𝑑 and 𝑥, vectors 
𝜎1 and 𝜎2 are drawn from 𝑈(0,10) (component-wise). They represent noise in 
each component of 𝑑 and 𝐴𝑑 + 𝜖1. Since we did not have currently observed 
true demand 𝑑′, we simulated it as 𝑑ℎ + 𝜖2, where 𝜖2 ∼ 𝑈(0,10) is the expected 
difference between 𝑑ℎ and 𝑑′ (since count data 𝑥ℎ were underestimated, which 
led to 𝑑ℎ underestimates 𝑑′). For this particular case, an analytical solution 
existed by Kalman-Filter. The posterior follows Normal distribution and explicit 
formula for computing mean and variance exists. The numerical solution was 
obtained from running MCMC simulations with 250 iterations and 3 chains. From 
the one-year APC dataset, we observed that each day had a different zone-level 
routing matrix 𝐴, and the estimated demand vector 𝑑 also has dimensions 
change day-to-day. Computational complexity of the MCMC simulation required 
writing the model in Stan and the execution code written in R and data onto 
Amazon Web Server with the package m5.2x large (32GB RAM, 8 CPUs). With 
the library(rstan) and the sampling() function in R, the MCMC calculation was 
performed. Each figure, on average, still took more than 3896 seconds to be 
produced. Figure 5-13 is the comparison plot for the OD pair zones 98 and 124 
over a 365-day time period.

Figure 5-13  OD pair zones 98 and 124 – MCMC solution (red) and Kalman-Filter 
solution (green) vs. simulated true demand (black) over 365 days 
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From the graph above, the solution by Kalman Filter always underestimated 
the true demand over most days, except it matched pretty well with the true 
demand on low-demand days (i.e., days with demand less than 50). On the other 
hand, in this case, the MCMC solution also matched well with the true demand 
on low-demand days (e.g., days 23, 56 and 103), but it severely underestimated 
the days with peak in demand (e.g., days 19, 87 and 151). We then computed the 
mean squared error (MSE) and the mean absolute percentage error (MAPE) over 
365 days of the MCMC and Kalman-Filter’s solutions and obtained quite large 
values for both MSE and MAPE of Kalman Filter (29.77 and 31.45) and MCMC 
(25.33 and 26.41%). The major sources of errors in MSE and MAPE came from 
severe underestimation of both solutions on the high-demand days. Combining 
the above results, we concluded that Normal-Normal gave poor estimated 
demand 𝑑 over high-demand days, although it did capture low demand days 
pretty well. 

Poisson-Normal (Prior-Likelihood) 
When the prior was Poisson, 𝑑 ∼  Pois(𝑑ℎ). The estimated parameter 𝑑 was in 
the discrete unbounded space, and Stan cannot sample discrete parameters. 
However, by observing that most of the non-zero components of 𝑑ℎ were 
sufficiently large, we approximated Poisson distribution with rate 𝑑ℎ by a 
Normal distribution having the same mean and approximately equal variance 
(recall that mean and variance of Pois𝑑ℎ are both 𝑑ℎ). 

Therefore, the Normal distribution approximation was of the form 𝑁(𝑑ℎ,𝑑ℎ + 𝑘), 
where 𝑘 ∼  𝑈(0.02,0.5) (the reason we have 𝑑ℎ + 𝑘 rather than 𝑑ℎ is because some 
components of 𝑑ℎ are zero, but Stan, by default, starts its MCMC simulation 
from the interval [−2,2]. Since log0 is not well-defined, we want to avoid those 
cases. But we also want 𝑘 to be small enough to match the second moment of 
𝑁(𝑑ℎ,𝑑ℎ + 𝑘) with that of Poiss(𝑑ℎ)). Thus, we ran the MCMC simulation with 250 
simulations and 3 chains to obtain the posterior of 𝑁(𝑑ℎ,𝑑ℎ + 𝑘) × 𝑁(𝐴𝑑 +  𝜖1, 𝜎1). 
Figure 5-14 is the comparison plot for OD pair zones 98 and 124 over a 365-day 
time period.

Figure 5-14  pair zones 98 and 124 – MCMC solution (red) vs. simulated true 
demand (black) over 365 days 
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From the graph above, we see that the estimated demand 𝑑 given by Poisson-
Normal model captured well days with moderately high demand (i.e., days with 
demand between 50 and 150 such as days 33, 87, 113). However, on very high/
low-demand days (i.e., days with demand greater than 150 or less than 50), 
it underestimated with a relatively high margin (for example, days 19, 87 and 
151). The MSE and MAPE computed were lower than that of the Normal-Normal 
case, but it still pretty high regardless—19.42 vs. 25.33, and 17.84% vs. 26.41%. 
The main factor to cause these relatively high MSE and MAPE were consistent 
underestimations of true demand on very high/low-demand days. In general, 
this pair of prior-likelihood was better than Normal-Normal, as it captured the 
moderately high days really well. 

Poisson-Poisson (Prior-Likelihood) 
Since the prior was still Poisson, we used the same Normal distribution 𝑁(𝑑ℎ,𝑑ℎ + 
𝑘), where 𝑘 ∼  𝑈(0.02,0.5) to approximate Poisson distribution. The likelihood in 
this case became Pois(𝐴𝑑 +𝜖1). Using MCMC simulation (250 iterations, 3 chains) to 
obtain the posterior distribution of 𝑁(𝑑ℎ, 𝑑ℎ + 𝑘) × Pois(𝐴𝑑 + 𝜖1), Figure 5-15 is the 
comparison plot for the OD pair zones 98 and 124 over 365 days. 

From the comparison plot above, for the OD pair zones 98 and 124, the MCMC 
solution was close to the true demand on days with low and moderately high 
demand (i.e., days with demand < 150). However, it tended to underestimate the 
true demand on high-demand days (i.e., days with demand ≥ 150), such as days 
37, 95 and 115. The MSE was lower than that of the Poisson-Normal case (15.26 
vs. 19.42) and the MAPE was smaller (13.79% vs. 17.84%). The major source for 
the high MSE was because of severe underestimation of the estimated solution 
on the high-demand days. The MAPE was lower because the total number of 
low and moderately high demand days were nearly five times the number of 
high-demand days, and the MCMC solution matched quite well with low and 
moderately high demand. 

Figure 5-15  OD pair zones 98 and 124 – MCMC solution (red) vs. simulated true 
demand (black) over 365 days 
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Normal-Poisson (Prior-Likelihood) 
As the Poisson distribution was assigned to likelihood, which Stan can sample 
because the parameter is not discrete anymore, we did not have to use Normal 
distribution to approximate it. Using MCMC simulation to obtain the posterior 
distribution of 𝑁(𝑑ℎ,𝑑ℎ + 𝑘) × Poisson(𝐴𝑑 + 𝜖1), where 𝜖1 is drawn from 𝑈(0,20), 
Figure 5-16 is a comparison plot between the estimated solution 𝑑 given by 
MCMC vs. true simulated demand 𝑑′ of a particular OD pair zones 98 and 124 
over 365 days. 

Figure 5-16  OD pair zones 98 and 124 – MCMC solution (red) vs. true demand 
(black) over 365 days 

From the comparison plot above, the MCMC solution fit quite well to the 
simulated true demand for OD pair zones 98 and 124 over the period of 365 
days. There were a few days that the estimated demand still underestimated 
the true one, such as days 62, 160 and 341. However, these underestimations 
were pretty small compared to the underestimation by other methods, as its 
range was narrower (between 4.5 and 11.4) and the mean was lower (7.61). 
The average MSE and MAPE across these 365 days were 10.73 and 6.35%, 
which are the lowest among all four cases, respectively. The reason MSE and 
MAPE were small is because the estimated demand given by this particular 
prior-likelihood did not severely overestimate or underestimate the demand 
between these two zone pairs (there were still days when true demand could 
not be matched very well by estimated demand, but the difference between 
the estimated and the true one was moderately small, as reflected through 
the low MSE. The three previous methods have a much wider margin of error 
for over and underestimation). Finally, for this optimal pair of prior-likelihood, 
we also examined the histograms of the estimated demand between other 
OD zone pairs such as 86 and 315, 1 and 39 over day 362. The histograms show 
distributions that are similar to the Normal distribution, which is the same 
distribution assigned to the prior.
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Figure 5-17  distribution of estimated demand between OD zone pairs 86 and 315 
and 1 and 39 look similar to Normal 

Figure 5-18  Day 362 – distribution of estimated demand between OD zone pairs 
86 and 315 and 1 and 39 look similar to Normal 

Bayesian Sensitivity Analysis 
From the results above, for the OD pair zones 98 and 124, it is easy to see 
that when the class of distributions assigned to Prior changes (such as from 
Poisson to Normal), the estimated demand changes substantially. Thus, the 
simulation result from the best case of Normal-Poisson (prior-likelihood) is 
sensitive to specific distributions assigned to prior-likelihood (i.e., they cannot 
be generalized when Prior does not follow Normal distribution). However, when 
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we modified the variance parameter 𝜖1 in the Normal distribution by increasing 
or decreasing the range of the uniform distribution where they are drawn 
from, the former is 𝑘 ∼  𝑈(0.02,0.5) (instead of 𝑈(0.02,0.9)) and the latter is 𝑘 ∼ 
𝑈(0.02,0.2). Running the MCMC simulation again with 250 iterations and 3 chains, 
the estimated demand 𝑑 still matched quite closely to the true demand 𝑑, but the 
MAPE for those cases were approximately 7.53% and 9.74%, while MSE increased 
to 7.33 and 9.53, respectively. However, increasing the range of possible values for 
variance helped fix the underestimation problem, as Figure 5-19 shows that the 
estimated demand matched quite closely with the true demand on the very high-
demand days (such as days 118, 183, 265), while decreasing such range did not 
help cure this problem, as Figure 5-20 shows the margin missed by the estimated 
solution on the days with peak demand (e.g., days 118, 183 or 265). Therefore, the 
result given by Normal-Poisson (prior-likelihood) is pretty robust with respect to 
the variance parameter of the Normal distribution assigned to prior. 

Figure 5-19  Day 362 – OD pair zones 98 and 124 – MCMC solution (red) vs. true 
demand (black) when ϵ_1∼U(0.02,0.5) 

Figure 5-20  OD pair zones 98 and 124 – MCMC solution (red) vs. true demand 
(black) when ϵ_1∼U(0.02,0.2) 

Summary of Results 
From the results obtained and the sensitivity analysis, among four possible 
pairs of prior-likelihood for OD pair zones 98 and 124, the Normal-Poisson 
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for prior-likelihood performed consistently well across 365 days, as it had the 
lowest MAP and MSE errors (there are still a couple of zone pairs missed, but 
this is obvious because we are doing forecasting). The second-best model were 
either between Poisson-Normal or Poisson-Poisson, as there were trade-off 
between these two (the first has lower MSE but higher MAP, the second has 
higher MSE and lower MAP). Furthermore, based on the simulation result, we 
can compute the sample mean of traffic flows between any zone pairs. This 
sample mean, by Central Limit Theorem, would be expected to converge to the 
population’s means. However, the result was not robust with respect to prior, 
so no inference can be made from the estimated demand once we relax the 
assumption that prior follows Normal distribution. The second-best model for 
this particular problem is Poisson-Normal, as it had the lower mean squared 
error compared to that of the Poisson-Poisson and Normal-Normal case. 
Finally, Normal-Normal did not work well over certain days due to its severe 
underestimation that results in the highest MSE and MAPE among four cases. 

Future Work 
There are many different ways that can be built upon this model, and results 
for a future team that might be interested in conducting further research on 
this topic. First is exploring other pairs of prior and likelihood, both at the 
zone level and at the individual stop level. For the latter case, zero-inflated 
negative binomial distribution assigned to prior is the promising candidate, 
as the counts data has lots of zeros. Second, a future team can attempt to 
find the robust Bayesian model for this APC dataset, so that we do not have 
to depend on the choice of prior (or if such robust model does not exist, 
prove it). Third, a future group can either incorporate other factors, such as 
distance traveled, transaction types, etc., that might affect demand into the 
Hierarchical Bayesian model and come up with the posterior distribution for 
the estimated demand, or they simply can apply the model above (potentially 
with different choices of priors and likelihood) to other transportation systems 

Error Types Normal-Normal Poisson-Normal Poisson-Poisson Normal-Poisson
MSE 25.33 19.42 15.26 10.73 

MAPE 26.41% 17.84% 13.79% 6.35% 

Error Types Normal-Normal Poisson-Normal Poisson-Poisson Normal-Poisson
MSE 28.79 16.48 17.61 10.73 

MAPE 32.62% 17.15% 14.43% 6.35% 

Table 5-1  OD Pair Zones 98 and 124 – 365-day Average MSE and MAPE for Four 
Cases of Prior- Likelihood

Table 5-2  365-day Average MSE and MAPE of Every OD Pair for Four Cases of 
Prior-Likelihood 
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such as Amtrak, bikesharing and carsharing. Fourth, even with this dataset, a 
future group can reduce the forecasting period from one day to half a day or 
even one hour, assuming that the trip time information can be collected by 
PACE (which should be the case as people use the Ventra card now). Finally, a 
future team can reformulate the original problem as a two-stage non-linear 
stochastic optimization problem and obtain the estimated demand by solving 
such problem and then compare the obtained results against those with a 
Hierarchical Bayesian model to see which one produces the best result.

Literature Research Summary 
Profile clustering has been conducted on mobility data in recent years for 
studying the temporal habits of passengers on their networks, and several 
methods have been developed to this end. The authors in McNichols (2010) 
proposed the use of a Gaussian mixture approach instead of a unigram mixture. 
The two-level generative mixture model uses non-aggregated data and fits 
a Gaussian mixture onto it. Specifically, the first-level model cards were 
partitioned into groups (card clusters) and the second took all ticketing logs of 
the clusters’ cards to represent temporal activity profiles of these groups as a 
Gaussian mixture model. This choice of Gaussian mixture is reasonable because 
we need to preserve the continuous nature of timestamps. 

Gaussians Mixture Generative Model 
For modeling the cluster memberships of the cards, the authors introduced 
the use of latent variable 𝑍𝑖

1 ∼ 𝑀(1, 𝜋) where 𝑀 denotes a multinomial 
distribution, 𝑍1 denotes membership of one of the 𝐾 card’s clusters and 𝑍𝑖

1 
denotes membership of card 𝑖 (𝑖 ∈ {1, … ,  𝑀}) onto one of the 𝐾 cards’ clusters 
and follows a multinomial distribution of parameter 𝜋 =  (𝜋1,… , 𝜋𝐾). Similarly, for 
the second level, let 𝑍2 denote membership of one of the 𝐻 Gaussians. and 𝑍𝑖𝑗

2 
denotes membership of trip 𝑗 (𝑗 ∈ {1,… ,  𝑁𝑖} where 𝑁𝑖 being the number of trips 
of cards 𝑖) to one of the 𝐻 Gaussians to describe the temporal activity of cluster 
𝑍𝑖𝑘

1 for the day 𝐷𝑖𝑗𝑙 (𝑙 ∈  {1,… , 7} being the set of the days of a week). Finally, 𝑋𝑖𝑗 
denotes trip time, which the authors assumed follows a Gaussian distribution 
𝑁(𝜇𝑘ℎ𝑙, 𝜎𝑘ℎ𝑙). Thus, mathematically, the two-level model could be written as 
follows: 

𝑍𝑖
1 ∼ 𝑀(1,  𝜋), 

𝑍𝑖𝑗2 | 𝑍𝑖𝑘1 𝐷𝑖𝑗𝑙 = 1 ∼ 𝑀(1, 𝜏𝑘ℎ𝑙) 

𝑋𝑖𝑗| 𝑍𝑖𝑘1 𝑍𝑖𝑗2ℎ𝐷𝑖𝑗𝑙 = 1 ∼ 𝑁(𝜇𝑘ℎ𝑙, 𝜎𝑘ℎ𝑙) 

The conditional density of 𝑋𝑖𝑗 is 𝑓 (𝑋𝑖𝑗|{𝑍𝑖𝑘
1 𝑍𝑖𝑗

2
ℎ𝐷𝑖𝑗𝑙 = 1}) = ∑𝐻

ℎ=1 𝜏𝑘ℎ𝑑𝑖𝑗 𝑓 (𝑥; 𝜇𝑘ℎ𝑑𝑖𝑗 

, 𝜎𝑘ℎ𝑑𝑖𝑗 ) where 𝑓 (. ;  𝜇, 𝜎2) is the density function of Gaussian distribution of mean 
𝜇 and variance 𝜎. From this, we obtained the likelihood model: 
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At this step, we could estimate the likelihood parameters in the mixture models 
using either Expectation Maximization (EM) algorithm or a Classification 
Expectation Maximization (CEM) when including a classification step. Since 
our model consists of two levels, it is natural to adopt a two-maximization 
step process for this parameter estimation. We would first use a complete log-
likelihood as a maximization criterion for the estimation. Then a CEM algorithm 
is used since it includes a classification step that assigns each observation 
to its most probable cluster (rather than yielding a vector of membership 
probabilities, as in the classic EM). Finally, this algorithm would take three 
key inputs: user ID (comprising anonymized card ID, card type, transaction 
date and time, stop location, transport line, method of validation, and type of 
transaction), day of the week, and hour of validation (service hours only, with 
no break at midnight). Then it returns the associated cluster for each user, the 
Gaussian mixture parameters and the complete log-likelihood. 

The disadvantages of the above model is mainly due to taking into account the 
days of the week, which could increase the number of clusters combinatorically, 
and the data used in McNichols (2010) for analysis are incomplete (lost or 
stolen cards do not keep the same ID when they are replaced). Furthermore, a 
dedicated model needs to be developed if we want to better understand the 
motivations behind the cards’ cluster changes. 

Single-level Time Dependent Path Flow Estimation Model 
Time-dependent OD demand matrices are fundamental inputs for dynamic 
traffic assignment (DTA) models to describe network flow evolution as a result of 
interactions of individual travelers. Intending to develop an internally consistent 
approach for the dynamic OD demand estimation problem, single-level path 
flow estimators (PFEs) have been proposed for the static OD estimation 
problem (e.g., the linear programming PFE by on estimating deterministic 
UE path flows, and the nonlinear programming PFE by estimating stochastic 
UE path flows). Inspired by those works, the authors in Ma, Smith, and Zhou 
(2016) present a new path flow-based optimization model and an effective 
Lagrangian relaxation-based solution framework for jointly solving the complex 
OD demand estimation and UE DTA problems. Their model simultaneously 
minimizes the deviation between measured and estimated traffic states, as well 
as the deviation between aggregated path flows and target OD flows, subject 
to a dynamic user equilibrium (DUE) constraint, which is reformulated using an 
equivalent gap function. The proposed Lagrangian relaxation-based algorithm 
dualizes the gap function-based DUE constraint into the objective function and 
solves the single-level relaxation problem by reducing the difference between 
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the upper and the lower bounds. This is different from the previous research, 
which developed column generation algorithms to solve the VI-based single-
level model. 

The nonlinear program is formulated as follows, where 𝐷𝑁𝐿𝐹(𝑟) denotes the 
given 𝐷𝑁𝐿 function of path flows proposed based on Newell’s simplified KW 
model (see for more details). 

Subject to

Set 

𝐴 = set of links 

𝑃 = set of paths 

𝐻𝑑 = set of discretized departure time intervals 

𝑊 = set of OD pairs  

List of Indices 

𝑡= index of simulation time intervals (𝑡 =  0, … ,  𝑇) 

𝜏  = index of departure time intervals (𝜏 ∈  𝐻𝑑) 

𝑤 = index of OD pairs (𝑤 ∈  𝑊) 

𝑝 = index of paths for each OD pair (𝑝  ∈ 𝑃) 

𝑙 = index of links (𝑙  ∈ 𝐴)  

Estimation Variables 

𝑟(𝑤,  𝜏,  𝑝) = estimated path flow on path 𝑝 of OD pair 𝑤 and departure time 
interval 𝜏 

𝑐 = {𝑐(𝑤,  𝜏,  𝑝) ∀𝑤,  𝜏,  𝑝} = estimated path travel time on path 𝑝 of OD pair 𝑤 and 
departure time interval 𝜏 
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𝜋 (𝑤,  𝜏) = estimated least path travel time of OD pair 𝑤 and departure time 
interval 𝜏 

𝑞 = {𝑞 (𝑙,  𝑡) ∀ 𝑙,  𝑡} = estimated number of vehicles passing through an upstream 
detector on link 𝑙 during observation interval 𝑡 

𝑘 =  {𝑘 (𝑙,  𝑡) ∀ 𝑙,  𝑡} = estimated density on link 𝑙 during observation interval 𝑡 

𝑑 (𝑤,  𝑡) =estimated demand of OD pair 𝑤 and departure time interval 𝜏 

The final solution is a set of path flows satisfying ‘‘tolled user equilibrium’’ 
(Lawphongpanich and Hearn, 2004), where the deviation with respect to traffic 
measurements can be viewed as an additional penalty for over-estimated 
or under-estimated path flows. By incorporating heterogeneous real-world 
measurements in the objective function, such as link densities from video 
surveillance and roadside detectors, the proposed estimation model fully uses 
available information to reflect route choices in a congestion network. 

The main advantage of such formulation is that it could directly aggregate 
estimated path flows to obtain final OD flow patterns and obviate explicit 
dynamic link-path incidences, as opposed to the majority of previous studies. 
Moreover, the proposed OD demand estimate model circumvents the difficulty 
of providing complex mapping matrices between OD demand flows and 
those measurements in most of the existing dynamic OD demand estimation 
methods. However, the authors did not explore the generalization of their 
modeling framework into the problems of real-time traffic state estimation 
and prediction. This would require further investigation into numerous issues, 
such as calibrating the maximum queue discharge rates that critically affect 
flows on downstream links, and accommodating possible modeling errors and 
behavioral heterogeneity in the DUE assignment.  

Bayesian Modeling for Large-Scale Dynamic Network Flow 
The authors used internet browser traffic flow through domains of the Fox News 
website to present Bayesian analyses of two linked classes of models which allow 
fast, scalable, and interpretable Bayesian inference. Their strategy was as follows: 

• Developed a class of Bayesian dynamic flow models (BDFMs), which are
(non-stationary and non-normal) state-space models, for streaming count
data to adaptively characterize and quantify network dynamics effectively
and efficiently in real-time.

• Developed Poisson Dynamic Models and Multinomial Dynamic models
for describing network inflows and transitions between network nodes,
respectively.

• Used such efficiently implemented models as emulators of time-varying
gravity models to allow closer and formal dissection of network dynamics.

• Yielded interpretable inferences on traffic flow characteristics and on
dynamics in interactions among network nodes.
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•	 Developed Bayesian model assessment methodology for sequential 
monitoring of flow patterns with the ability to signal departures from 
predictions in real-time and allow informed interventions as a response 

Bayesian Dynamic Flow Models (BDFMs) 
Given 𝑥𝑡 is a time series with 𝑥𝑡| 𝜙𝑡 ∼ 𝑃(𝑚𝑡𝜙𝑡) conditionally independent for 𝑡  = 
1,  2, … Define 𝜙𝑡 is a latent process, 𝑚𝑡 a scaling factor known at time 𝑡. Using 
Markov model, 𝜙𝑡 process appears as: 

𝜙𝑡 = 𝜙𝑡
𝛿

−
𝑡
1𝜂𝑡 , 𝜂𝑡  ∼  𝐵(𝛿𝑡𝑟𝑡, (1 − 𝛿𝑡)𝑟𝑡), 𝜂𝑡 and 𝜂𝑠, 𝜙𝑠 are independent for 𝑠  <  𝑡

where 𝛿𝑡  ∈ (0,  1) is a discount factor, 𝑟𝑡  = a given function of 𝑡, 𝑥0: 𝑡−1 and 
independent innovations 𝜂𝛿

𝑡
𝑡 drive the 𝜙𝑡 process’s evolution. Note: The beta 

distributions imply (1) 𝐸(𝜙𝑡| 𝜙𝑡−1) = 𝜙𝑡−1, thus it is a multiplicative random 
walk model (i.e., “steady” evolution), and (2) a lower value of 𝛿𝑡 leads to a more 
diffuse distribution for 𝜂𝛿𝑡𝑡, and hence increased uncertainty about 𝜙𝑡 and 
adaptability to changing rates over time. 

The BDFM above ensures full conjugacy in the forward filtering/Bayesian 
sequential learning over time. 𝑥0 is a synthetic notation for initial information.

Figure 5-21 Snapshot of counts and flows on Fox News at time t = 1 (9:05:30 Feb 
23, 2015) 

•	 Forward Filtering (FF): At any time 𝑡, both the prior 𝑝(𝜙𝑡| 𝑥0: 𝑡−1) and 
posterior 𝑝(𝜙𝑡| 𝑥0:𝑡) for “current” latent level are gamma distributions, with 
parameters that are updated as 𝑡 evolves. 
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• One-Step Forecasts: The one-step ahead forecast distribution made at
time 𝑡 − 1 to predict time 𝑡 is generalized negative binomial with p.d.f.

$$p(x_{t}|\,x_{0:t-1},\,\delta_{t-1})\,=\frac{\mbox{\ensuremath{\Gamma}(}\delta_{t}
r_{t1}+x_{t})}{\Gamma(\delta_{t}r_{t-1})\Gamma(x_{t}+1)}\frac{m_{t}^{x_{t}}(\delta_
{t}c_{t1})^{\delta_{t}r_{t-1}}}{(\delta_{t}c_{t-1}+m_{t})^{\delta r_{t-1}+x_{t}}}$$

Figure 5-22  Network schematic and notation for flows at time t

The above model could be defined by any sequence of discount factors {𝛿𝑡}. 
A constant value over time defines a global smoothing rate; values closer to 
1 constrain the stochastic innovation and hence the change from 𝜙𝑡−1 to 𝜙𝑡. 
Also, smaller discount factor values lead to greater random changes in these 
Poisson levels. Intervention to specify smaller discount factors at some time 
points, to reflect or anticipate higher levels of dynamic variation at those times, 
are sometimes relevant. In our network flow models below, we customize the 
specification of the sequence of discount factor to address issues that arise in 
cases of low flow levels. That extension of discount-based modeling defines the 
t as time-varying functions of an underlying base discount rate, and the latter 
are then evaluated using MML measures. 

Network Inflows: Poisson Dynamic Models 
Adding suffices 𝑖 for network nodes and setting the Poisson mean scaling 
factors to 1, the authors customized this model via specification of discount 
factor sequences. At any node 𝑖, the time 𝑡 inflow to node 𝑖 is 𝑥0𝑖𝑡  ∼  𝑃(𝜙𝑖𝑡) 
independently across nodes 𝑖  =  1: 𝐼, and the latent levels 𝜙𝑖𝑡 it follow node-
specific gamma-beta discount models with discount factor it at time 𝑡. The time 
𝑡  →  𝑡 + 1 update/evolve steps are as follows: 

• Time 𝑡 prior 𝜙𝑖𝑡 | 𝑥0𝑖, 0:𝑡−1  ∼ 𝐺(𝛿𝑖𝑡𝑟𝑖, 𝑡, 𝛿𝑖𝑡𝑐𝑖, 𝑡−1) updates to the posterior
𝜙𝑖𝑡| 𝑥0𝑖, 0:𝑡 ∼ 𝐺(𝑟𝑖𝑡, 𝑐𝑖𝑡) with 𝑟𝑖𝑡  =  𝛿𝑖𝑡𝑟𝑖, 𝑡−1 + 𝑥0𝑖𝑡 and 𝑐𝑖𝑡 = 𝛿𝑖𝑡𝑐𝑖, 𝑡−1 + 1.

• This then evolves to the time 𝑡 + 1 prior 𝜙𝑖, 𝑡+|𝑥0𝑖, 0:𝑡 ∼𝐺(𝛿𝑖, 𝑡+1𝑟𝑖, 𝑡, 𝛿𝑖, 𝑡+1𝑐𝑖𝑡), and
so on.
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Discount factors 𝛿𝑖𝑡 relates to the information content of gamma distributions as 
measured by the shape parameters 𝑟𝑖∗; evolution each time point reduces this 
by discount factor, the latter representing a per-time-step decay of information 
induced by the stochastic evolution. 

Node-specific MML measures that feed into model assessment to aid in 
selection of the baseline discount factors 𝑑𝑖: These measures of short-term 
predictive fit of the models can also be monitored sequentially over time for 
online tracking of model performance. 

Transitions from Network Nodes: 
Multinomial Dynamic Models 
Transitions from any node 𝑖 at time 𝑡 are inherently multinomial with time-varying 
transition probabilities. To build flexible and scalable models for dynamics and 
dependencies in transition probability vectors is a challenge, with computational 
issues for even simple models quickly dominating. The authors extended the 
univariate Poisson/gamma-beta random walk models to enable flexibility in 
modeling node-pair specific effects as they vary over time as well as scalability. 

The core model is 𝑥𝑖,0:𝐼, 𝑡  ∼ 𝑀𝑛(𝑛𝑖, 𝑡−1, 𝜃𝑖, 0:𝐼, 𝑡), where the current node 𝑖 occupancy 
level is 𝑛𝑖, 𝑡−1, and 𝜃𝑖, 0:𝐼, 𝑡 is the (𝐼 +  1)-vector of transition probabilities 𝜃𝑖𝑗𝑡 

(including the “external” node, leaving the network - at 𝑗 = 0). The decoupled 
BDFMs include 𝑥𝑖𝑗𝑡 ∼  𝑃(𝑚𝑖𝑡𝜙𝑖𝑗𝑡) and mit = nit-1/nit-2 independently, with 
independent gamma-beta evolutions for each latent level 𝜙𝑖𝑗𝑡. 

These BDFMs for each node pair can be customized with node-pair specific 
discount factors, allowing greater or lesser degrees of variation by node pair. 
The set of models for elements of 𝜙𝑖, 0:𝐼, 𝑡 implies a dynamic model for the 
vector of transition probabilities 𝜃𝑖, 0:𝐼, 𝑡 having elements 𝜃𝑖𝑗𝑡 = ∑𝑗=𝜙

0:𝑖𝑗𝑡
𝐼  𝜙𝑖𝑗𝑡. 

Independence across nodes enables scaling, as the analyses can then be 
decoupled and run in parallel for the 𝜙𝑖𝑗𝑡 and then recoupled to infer the 𝜃𝑖𝑗𝑡. 

Now, the decoupled, scaled models are not predictive of overall occupancy; 
rather, they are decoupled, tractable models that are relevant to tracking 
and short-term prediction of relative occupancy levels through the implied 
multinomial probabilities. In sequential analysis of transitions, the node-pair 
specific models generate full joint predictions one-step ahead (or more, if desired) 
for the theoretically exact set of multivariate flow vectors 𝑥𝑖, 0:𝐼, 𝑡 across all nodes. 

Model Mapping for Bayesian Emulations  
of Dynamic Gravity Models (DGMs) by BDFMs 
The DGM model is defined as within each network node 𝑖 = 1: 𝐼 and all 𝑗 =  0: 𝐼,

𝜙𝑖𝑗𝑡 =  𝜇𝑡𝛼𝑖𝑡𝛽𝑗𝑡𝛾𝑖𝑗𝑡
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with (i) a baseline process 𝜇𝑡; (ii) node 𝑖 main effect process 𝛼𝑖𝑡, adjusting the 
baseline intensity of flows-origin or outflow parameter process for node 𝑖; (iii) 
a node 𝑗 main effect process 𝛽𝑗𝑡; representing the additional “attractiveness” 
of node 𝑗 the destination or inflow parameter process for node 𝑗; and (iv) an 
interaction term 𝛾𝑖𝑗𝑡, representing the directional “affinity” of node 𝑖 for 𝑗 over 
time relative to the combined contributions of baseline and main effects. 

The authors also commented that analysis via MCMC is computationally very 
demanding, and the burden increases quadratically in 𝐼, and inherently non-
sequentially. 

Now, the mapping to 𝐷𝐺𝑀 parameters requires aliasing constraints to match  
dimensions, then define ℎ𝑡 = log(𝜇𝑡) , 𝑎𝑖𝑡 = log(𝛼𝑖𝑡), 𝑏𝑗𝑡 = log(𝛽𝑗𝑡) and 𝑔𝑖𝑗𝑡 = log(𝛾𝑖𝑗𝑡). 
Using the + notation to denote summation over the range of identified indices, 
constrain via 𝑎+𝑡 = 𝑏+𝑡 = 0, 𝑔+𝑗𝑡 = 𝑔𝑖+𝑡 = 0 for all 𝑖,  𝑗,  𝑡. We then have a bijective 
map between BDFM and DGM parameters; given the 𝜙𝑖𝑗𝑡 we can directly 
compute implied, identified DGM parameters. The emulating BDFM enforces 
smoothness over time in parameter process trajectories, and this acts to 
substantially reduce the effective model dimension. 

Define 𝑓𝑖𝑗𝑡  =  log(𝜙𝑖𝑗𝑡) for each 𝑖 = 1: 𝐼,  𝑗 = 0: 𝐼 at each time 𝑡 = 1: 𝑇. Then at each 
time 𝑡, we compute the following in order: 

• Baseline level 𝑢𝑡 = 𝑒ℎ𝑡 where ℎ𝑡 = 𝐼(𝑓
𝐼
+

+
+

1
𝑡 )

• For each 𝑖 = 1: 𝐼, the origin node main effect 𝛼𝑖𝑡 = 𝑒𝛼𝑖𝑡 where 𝛼𝑖𝑡 = 𝑓𝐼+
𝑖+

1
𝑡 − ℎ𝑡 

•	 For each 𝑗 =  0: 𝐼, the destination node main effect 𝛽𝑗𝑡 = 𝑒𝑏𝑗𝑡 where 𝑏𝑗𝑡 = 𝑓
— 

+𝐼𝑗𝑡 − ℎ𝑡

• For each 𝑖 = 1: 𝐼 and 𝑗 =  0: 𝐼, the affinity 𝛾𝑖𝑗𝑡 = 𝑒𝑔𝑖𝑗𝑡 where 𝑔𝑖𝑗𝑡 = 𝑓𝑖𝑗𝑡 − ℎ𝑡 −
𝑎𝑖𝑡 − 𝑏𝑗𝑡 

The authors then apply this to all simulated ijt from the full posterior analysis 
under the BDFM to map to posteriors for the DGM parameter processes. 

The disadvantage of this mapping approach arises in cases of sparse flows, 
i.e., when multiple 𝑥𝑖𝑗𝑡 counts are zero or very small for multiple node pairs. In
such cases the posterior for 𝜙𝑖𝑗𝑡 favors very small values and the log transforms
are large and negative, which unduly impacts the resulting overall mean and/
or origin or destination means. While one can imagine model extensions to
address this, at a practical level it suffices to adjust the mapping as is typically
done in related problems of log-linear models of contingency tables with
structural zeros. This is implemented by simply restricting the summations in
identifiability constraints to node pairs for which 𝑥𝑖𝑗𝑡 > 𝑑, for some small 𝑑, and
adjusting divisors to count the numbers of terms in each summation.
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Bayesian Inference on Network Traffic Using Link Count Data 
In Tebaldi and West (1998), the authors considered the fixed network of 𝑛 nodes, 
arbitrarily labeled 𝐴,  𝐵, …, and solved the problem of estimating the actual 
counts of messages travelling between pairs of nodes in the network, based 
on observation of traffic counts on all individual directed links in the network 
without intervening nodes. Let 𝑟 be the total number of directed links in the 
network, 𝑠 =  (𝑖,  𝑗) represent the directed link from node 𝑖 to node 𝑗, and 𝑌𝑠 for 
the traffic count on this link. 

Then, given an observed link counts 𝑌 : =   (𝑌1,… , 𝑌𝑟)𝑇, they inferred OD counts 
𝑋 : = (𝑋1, … , 𝑋𝑐)𝑇. Using the relationship 𝑌 =  𝐴𝑋 where 𝐴 = 𝑟   × 𝑐 routing matrix 
{𝐴𝑠, 𝑎}, 𝐴𝑠, 𝑎 = 1 if the directed link 𝑠 belongs to the directed route through 
the network between 𝑂𝐷 pair 𝑎, and 𝐴𝑠, 𝑎 = 0 otherwise. From an algebraic 
perspective, 𝑌 imposes a set of linear constraint on 𝑋. Note that (𝐴𝐴𝑇)𝑎, 𝑎 
counts the number of OD routes passing through link 𝑎, and (𝐴𝐴𝑇)𝑎, 𝑏 counts the 
number of routes that pass through both links 𝑎 and 𝑏. 

The authors attempted to compute the posterior distribution 𝑝(𝑋|𝑌) for all 
route counts 𝑋 given the observed link counts 𝑌. To solve this problem, they 
assumed 𝑋 is generated from a collection of independent Poisson distributions 
for the elements 𝑋𝑎 (i.e., 𝑋𝑎 ∼ 𝑃(𝜆𝑎) independent over 𝑎). Then the prior joint 
model is 𝑝(𝑋,  ∧) = 𝑝(∧) ∏𝑐

𝑎=1   𝜆𝑎
𝑋𝑎 𝑒(−𝜆𝑎)/(𝑋𝑎!) Now, to find the posterior 𝑝(𝑋, ∧ 

|𝑌), they developed iterative MCMC simulation methods, in particular Gibbs 
sampling in which they iteratively resample from conditional posteriors for 
elements of the 𝑋 and ∧ variables. 

Since 𝑝(∧ |𝑋,  𝑌) ≡ 𝑝(∧ |𝑋) = ∏𝑎
𝑐=1   𝑝(𝜆𝑎| 𝑋𝑎) which has components of the 

form of prior density 𝑝(𝜆𝑎) multiplied by the gamma form arising in the Poisson-
based likelihood function. Thus, by conditioning on 𝑋, the authors simulated 
new ∧ values as a set of independent draws from the implied univariate 
posteriors. For such simulation, they used embed Metropolis-Hasting step in 
the MCMC scheme. Finally, by fixing ∧, they deduced the posterior distribution 
𝑝(𝑋| ∧,  𝑌) with the constraints imposed on 𝑋 by the equation 𝑌 =  𝐴𝑋 using 
simulation in the MCMC scheme. To effectively simplify the computations for 
making this inference, they used the following result. 

Theorem Assume 𝐴 is full rank 𝑟. Then the columns of 𝐴 can be reordered so 
that the revised routing matrix has the form [𝐴1, 𝐴2] = 𝐴 where 𝐴1 is a non-
singular 𝑟  ×  𝑟 matrix. Also, by reordering the elements of 𝑋 vector and partition 
𝑋𝑇 = (𝑋1

𝑇, 𝑋2
𝑇), it follows 𝑋1 = 𝐴1−1(𝑌 −  𝐴

2
𝑋2)

Using this theorem, the conditional distribution 𝑝(𝑋| ∧,  𝑌) is concentrated 
in a subspace of dimension 𝑐 − 𝑟 defined by partition [𝐴1, 𝐴2] = 𝐴 of the 
routing matrix 𝐴. This posterior has the form 𝑝(𝑋1|𝑋2, ∧, 𝑌)𝑝(𝑋2| ∧,  𝑌) where 
𝑝(𝑋1|𝑋2, ∧,  𝑌) is degenerate at 𝑋1 = 𝐴1−1(𝑌 −  𝐴2𝑋2), and 
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𝜆𝑋
𝑎

𝑎 where with 𝑋2 = (𝑋𝑟+1,. . . , 𝑋𝑐)𝑇 defining 𝑋1 = (𝑋1,. . . , 𝑋𝑟)𝑇 as earlier, 
𝑝(𝑋2| ∧,  𝑌) ∝ ∏𝑎

𝑐 =1Xa!

𝑋𝑎 ≥ 0 for all 𝑎 =  1, … ,  𝑐. This is the product of independent Poisson priors 
for the 𝑋𝑖 constrained by the identity 𝑌 =  𝐴𝑋 rewritten in the form 𝑋1 = 𝐴1

−1(𝑌 
− 𝐴2𝑋2). Now, by considering each elements 𝑋𝑖 of 𝑋2 (𝑖 = 𝑟  + 1,… ,  𝑐) and 
write 𝑋2, −𝑖 for the remaining elements, the authors obtained the conditional 
distribution 

where 𝑋𝑖 ≥ 0 and 𝑋𝑎 ≥ 0 for each 𝑎 = 𝑟   + 1, … ,  𝑐 and 𝑖 = 𝑟  + 1, … ,  𝑐.

Gibbs and Metropolis-Hastings Algorithms 
Fix starting values of the route counts 𝑋 and proceed as follows: 

• Draw sampled values of the rates ∧ from the 𝑐 conditionally independent
posteriors 𝑝(𝜆𝑎| 𝑋𝑎).

• Conditioning on these values of ∧, simulate a new 𝑋 vector by sequencing
through 𝑖 = 𝑟  + 1, … ,  𝑐 and at each step, sampling a new 𝑋𝑖 from (14), with
conditioning elements 𝑋2, −𝑖 set at their most recent sampled values; at
each step 𝑋𝑖 is explicitly reevaluated via 𝑋1 = 𝐴1

−1(𝑌 −  𝐴2𝑋2) as a function
of the most recently sampled elements of 𝑋2.

• Return to step 1 and iterate.

This is a standard Gibbs sampling setup in which the scalar elements of both 𝐴 
and 𝑋 are resampled from the relevant distribution conditional on most recently 
simulated values of all other uncertain quantities. Sampling steps in 1 are easy. 
Sampling steps in 2 require evaluation of the support of (14), and subsequent 
evaluation of the unnormalized posterior (14) at each step. Sampling may be 
performed directly, treating (14) as a simple multinomial distribution on this 
relevant range. But in larger, more realistic networks, the implied evaluation 
of (14) across what may be a very large support, at each iteration and for 
each element 𝑋𝑖, leads to a computational burden that may be excessive 
when compared to alternative approaches. To do this requires identifying the 
support of (14) which, as mentioned earlier, can become computationally very 
burdensome in net- works of even moderate size. 

A more efficient algorithm is based on embedding Metropolis-Hastings steps 
within the Gibbs sampling framework. Specifically, assume a fixed proposal 
distribution with probability mass function 𝑞𝑖(𝑋𝑖) for each element 𝑋𝑖 in step 2. A 
candidate value 𝑋𝑖

∗ is drawn from 𝑞𝑖(. ) and accepted with probability
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where 𝑋𝑖 is the current, most recently sampled value and 𝑝𝑖(. ) is the normalized 
conditional posterior in equation (14). From the structure of the network 
equations in (1), it is possible to identify bounds on each 𝑋𝑖 so that a suitable 
range for proposal distribution can be computed. Then, based on the specified 
bounds, the implied vector 𝑋1 in (14) is recomputed and checked for feasibility; 
that is, nonnegative values. If any element of 𝑋1 is negative, then the trial value 
of 𝑋𝑎 is either incremented, in searching for the lower bound on its range, or 
decremented, in searching for the upper bound. This process terminates and 
delivers the resulting bounds once the 𝑋1 vector has 𝑟 nonnegative entries. 

Theoretical assurance that the MCMC algorithm so defined converges—that is, 
ultimately generates samples from the true joint posterior 𝑝(𝑋, ∧ |𝑌)—follows 
if we can determine that the Markov chain is irreducible. This is equivalent to 
determine whether or not the current value (𝑋, ∧) can “move” to any other 
point in the joint parameter space following a finite number of iterations of 
the scheme (1) and (2). For the elements of ∧, there is no problem, because 
of continuous priors with fixed support. But for the 𝑋, the support of the 
conditional posteriors (14) depends on resampled values of elements of 𝑋2 and 
so it changes after each iteration It can be shown, however, that in fact 𝑋2 is 
free to move arbitrarily around its parameter space in consecutive iterations, 
despite the support constraints and complications. Thus, the resulting chain is 
irreducible, and convergence is assured. 

Use-Case Problem 
From now on, we denote the distribution for prior and likelihood as 𝑃1 and 𝑃2, 
respectively. We then apply our Hierarchical Bayesian model demonstrated 
above with prior and likelihood following Normal distributions. In this particular 
case, we will use both Kalman-Filter (since the analytical solution exists in this 
case) and MCMC to obtain the posterior distribution for 𝑑|𝑑ℎ,𝐴. The sample 
network we consider comprises eight bus stops, where every two pairs are 
connected either directly or indirectly. 
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Figure 5-23  Sample network with eight bus stops 

Denote set of bus stops as 𝐼 =  𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, historical demand 𝑑ℎ = (𝑑ℎ)𝑖𝑗 
where 𝑖, 𝑗 ∈ 𝐼, and 𝑑𝑖𝑗 = demand from 𝑖 to 𝑗. The true demand is denoted as vector 
𝑑 =  (𝑑)𝑖𝑗. We now construct the routing matrix 𝐴 using the following heuristic 
algorithm. 

Routing Matrix Construction Heuristic Algorithm 
Initialize a zero routing matrix 𝐴 whose columns are labeled 𝑖𝑗  (𝑖 ≠ 𝑗) if stops 𝑖 
and 𝑗 are connected directly. Row 𝑖 corresponds to the ON count at stop 𝑖. Set 
(𝑎𝑖𝑗)row i = 1. 

Transitivity Rule 2.1. For any two columns (𝑖𝑗) and (𝑗𝑘), add a new column 𝑖𝑘 
to the end of the matrix. 2.2. If (𝑎𝑗𝑘)row i = 1 and (𝑎𝑘𝑙)row i = 1, set (𝑎𝑗𝑙)row i = 1. 

Based on the heuristic algorithm above, and the structure of our sample 
network in Figure 2, we obtain the following routing matrix 𝐴. 

Step 1. Fill out all entries (𝑎𝑖𝑗)row i = 1 for directly connected pairs of stop 𝑖 and 𝑗. 
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Step 2. Apply Transitivity Rule to every row (note that 𝐻𝑖, denotes row 𝑖 of 
matrix 𝐻).

Since the size of 𝐴 is 8 × 16, the size of estimated demand variable 𝑑 has to be 16 
× 1. Each component of 𝑑 must match with both the indices of column labels of 
𝐴 and the corresponding row of 𝐴 (for example, the first three components of 𝑑 
must be 𝑑𝐴𝐵,𝑑𝐴𝐷 and 𝑑𝐴𝐶 because row 1 of 𝐴 corresponds to (𝑑𝐴)ON). 

Now, from our assumption, since prior and likelihood both follow Normal 
distributions, we have 𝑃(𝑥|𝑑) ∼  𝑁(𝐴𝑑, 𝜎1) and 𝑃(𝑑) ∼ 𝑁(𝑑ℎ,𝜎2), where discrete 
𝜎1 ∼ 𝑁(0,10), 𝜎2 ∼ 𝑁(0,5) (the range of these normal distributions are chosen 
depending on our expectation on how much deviated from the true demand is 
the historical demand, and how good is our estimated demand). Since this is a 
use-case example, we simulated discrete 𝑥 𝑈(400,600). Since the equation 𝐴𝑑ℎ 
= 𝑥 does not have any solution, we recovered 𝑑ℎ by solving for the solution 𝑑ℎ in 
the least-square sense by minimizing ||𝐴𝑑ℎ − 𝑥||2

2. Using equation (1), we only 
need to compute the posterior distribution 𝑝(𝑥|𝑑)𝑝(𝑑) = 𝑁(𝐴𝑑, 𝜎1)𝑁(𝑑ℎ, 𝜎2). To 
compute this, we will show two following methods: first is Kalman-Filter and 
second is MCMC simulation. For the latter case, for the purpose of showing the 
flexibility of MCMC simulation compared to Kalman-Filter, we apply it to obtain 
the posterior distribution 𝑃(𝑑|𝑥, 𝑑ℎ) even for the case when 𝑑ℎ is not available. 
Finally, we generate the histograms to show the distribution of each component 
of our estimated demand 𝑑 obtained by MCMC simulation, and compare 𝑑 to the 
simulated "true" demand 𝑑′, where 𝑑′ = 𝑑ℎ + 𝜎2. 

Kalman-Filter - Analytical Solution 
Since we need to compute the distribution of 𝑝(𝑑|𝑑ℎ,𝑥) ∝ 𝑝(𝑥|𝑑)𝑝(𝑑|𝑑ℎ) ∼ 𝑁(𝐴𝑑, 
𝜎1)𝑁(𝑑ℎ,𝜎2), which results in another normal-distribution 𝑁 , Kalman-Filter gives 
the following analytical formula to compute the mean 𝑑 and co-variance matrix 
∑, at a given time 𝑡, 

𝑑𝑡  : =  𝐾(𝑥𝑡−1 − 𝐴𝑑𝑡−1) + (𝑑ℎ)𝑡−1 
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Where,

and 𝐼 is an identity matrix. 

Using R to perform the matrix multiplications and subtractions to compute the 
term 𝐾 and plugging it into the equations, we obtain the values for the mean 
and co-variance matrix of the posterior distribution 𝑁 : 

MCMC Simulation – Numerical Solution
As shown above, we need to compute 𝑝(𝑑|𝑑ℎ,𝑥) ∝ 𝑝(𝑥|𝑑)𝑝(𝑑|𝑑ℎ) ∼ 𝑁(𝐴𝑑, 𝜎1)
𝑁(𝑑ℎ,𝜎2).Using Stan, which is the probabilistic modeling language for statistical 
inference with the simple interface with R, and "sampling()" package in R to 
perform MCMC simulation in two different scenarios.

Historical Demand (dℎ) is Available

With this first scenario, we assume that currently observed OD flows are close 
to historically observed values. To simulate the values for these current OD 
flows, we add some noise term 𝜖 ∼  𝑁(0,  5) into our historical demand 𝑑ℎ to 
account for measurement errors and taking into account the historical OD 
flows. Using "sampling()" package in R, I perform MCMC to estimate the current 
OD flows with the 3 sample chains with 500 iterations for each chain in our 
MCMC simulation. The results obtained show a pretty close match between 
our estimated demand 𝑑 vs. the simulated true demand, as reflected in Figure 
5-24. Furthermore, we can generate the histograms for each component of the 
estimated demand 𝑑 to observe the distribution of its components. The four 
histograms for the first four component of the estimated demand 𝑑 is displayed 
in Figure 5-24. 
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Figure 5-24  Distributions of first four components of true demand d 

Finally, we compute the average of the third chains of MCMC simulation stored 
in a 3dimensional object in R to obtain the approximated mean value for each 
component of the obtained estimated demand 𝑑:

We compare the mean 𝑑𝑀𝐶𝑀𝐶 with the mean 𝑑 of Kalman-Filter by computing 
the 𝐿2 norm error: || 𝑑𝑀𝐶𝑀𝐶 − 𝑑𝐾𝐹||2

2  ≈  6.989. This is sufficiently small because the 
true data 𝑑 is discrete and in the order of hundreds, so the estimated demand 
obtained by MCMC is pretty accurate.

Historical Demand (dℎ) is Unknown

With this second scenario, we assume that historical OD flows and currently 
observed ones are learned simultaneously (so 𝑑ℎ is not known anymore, but 
rather, we simulate 𝑑ℎ ∼ 𝑃(24, 𝜆) where 𝜆 is drawn randomly 24 times from 
a uniform distribution 𝑈(0,40)). Adding some noise term 𝜖 ∼  𝑁(0,  5) into 
our historical demand 𝑑ℎ to account for measurement errors and taking into 
account the historical OD flows, we estimate the current OD flows with MCMC 
(again, by using three sample chains with 500 iterations for each chain). The 
results obtained allowed generation of the histograms for displaying the 
distributions of the first four components of the estimated demand 𝑑. 
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Figure 5-25  Distributions of first four components of true demand d 

We then proceed exactly the same as in the first scenario and obtain the mean 
value of our estimated demand 𝑑:

We then compare the mean 𝑑 obtained by MCMC with the mean 𝑑𝐾𝐹, and obtain 
the 𝐿2 − 𝑛𝑜𝑟𝑚 error || 𝑑𝑀𝐶𝑀𝐶 − 𝑑𝐾𝐹||2

2  ≈  9.2. This is sufficiently small because 
the simulated true demand data are of the order of hundreds. 

Heatmap Analysis for APC and Ventra Datasets 
Using the ggmap package in R, we generated several heat maps for the average 
and total APC "ON" and "OFF" per hours of a day, days of a week, and days of a 
month to gain a better understanding about the spatial locations where people 
can travel with PACE buses within Northwest region of Chicago (note that 
the APC dataset contains only buses starting from one garage located in the 
Northwest region of Chicago). We observed the following results. 

The heat map of average APC OFF per hours of day shows that most people, on 
average, get off at a few common sub-regions at each hour of the day, whereas 
that of average APC ON (also per hours of day) has no heat at almost every hour 
except at 4:00 am; the heat location at 4:00 am has longitude ∈ (−87.9,−87.8) and 
latitude ∈ (41.9,42.0). This implies that, on average, at each hour of a day, the 
origins of most bus trips spread out all over the place, while the destinations 
of those trips concentrate on just a few sub-regions—for example, between 
5:00-7:00 am, most people get off at the rectangle regions with longitude ∈ 
(−88,−87.7) and latitude ∈ (41.9,42). 
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The heat map of average APC OFF per each day in the month of October also 
concentrates on a few sub-regions—those with longitudes ∈ (−87.9,−87.7) 
and latitudes ∈ (42.1,42.2) or (41.9,42.0), and that of average APC ON per each 
day in October also concentrates on particular sub-regions with longitude ∈ 
(−88,−87.7) and latitude ∈ (41.9, −42). This means that, on average, during each 
day of the month, people get on at bus stops within a particular sub-region and 
also get off at either the same or another specific sub-region. 

The heat map of average APC OFF per every days of a week except Sunday 
concentrates on a particular sub-regions with longitude ∈ (−87.9,−87.7) and 
latitude ∈ (41.9,42.0)), and that of average APC ON (per the corresponding days) 
also concentrates on that same particular regions. This means that, on average, 
people travel short trips most of the day and start and end the trip at the same 
sub-region (but the exact locations are different). On Sunday, though, the travel 
pattern changes, and most people start at the same sub-region as the previous 
days, but they mostly get off at the sub-region with longitude ∈ (−87.9,−87.8) and 
latitude ∈ (42.1,42.2). 

All three previous arguments also applied to total APC ON and OFF per day-to-
day, hour-to-hour, and week-to-week variations, but the sub-regions changed. 

Finally, we examined two other aspects of this October 2015 dataset: first is 
the heatmap of total and average APC ON and OFF (based on different time 
variations) to observe if there are any popular zone-level departures and 
destinations for the majority of bus riders. Second is the total APC ON per route 
per day of week to see the usage of bus riders with respect to individual routes 
and detect whether any route is taken much less compared to other routes (so 
that managers can re-route the bus to avoid this route or to assign fewer buses 
to cover this route due to the low demand from bus riders). 
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Figure 5-26  Geographical heat map of APCs for boarding PACE buses per day of week in October 2016
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Figure 5-27  Geographical heat map of APCs for alighting from PACE buses per day of week in October 2016
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Figure 5-28  Geographical heat map of APCs for boarding PACE buses per day of 
week in 2015
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Figure 5-29  Geographical heat map of APCs for alighting from PACE buses per 
day of week in 2015
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Figure 5-30  Geographical heat map of APCs for boarding PACE buses per month in October 2015
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Now, the heatmap of total APC ON and OFF (Automatic Passenger Counters 
for Boarding and Alighting) per days of week shows that most riders actually 
depart at the same regions with lat x lon in [42.0,42.1] × [−87.7,−87.6] across the 
entire week. The fact that the same region has the highest number of people 
getting on/off the bus stops implies that bus riders departed at the same place 
but went to different places for arrivals and then all went back to the same 
location by bus. This aligns with PACE’s mission of mainly serving students, 
workers, and citizens to workplace, school, and public places. The total APC 
ON and OFF across different months also shows the same region in [42.0,42.1] 
× [−87.7,−87.6], except during the January–March where another region in 
[41.7,41.8] × [−87.7,−87.6] has more people get on and off. But once again, this 
region is the most common departure and arrival of bus riders, which confirms 
our observations for the total APC ON/OFF (see Figures 5-26 through 5-31) . In 
regard to the total and average APC ON per route per days of week, route 769 
was used only on Thursday and Sunday, with a total of only 170 riders using 

Figure 5-31  Geographical heat map of APCs for alighting from PACE buses per month in October 2015
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this route compared to the most crowded route, 714, which has more than 
50,000 riders per week. This is in contrast to the average APC ON per route, as 
the peak of average APC ON of route 769 is 17 on Thursday, compared to only 
0.1 of route 714. This is mainly because the number of times riders take route 
714 is more than 100 times greater than route 769, which skew the average 
number substantially (see Figures 5-32 through 5-35). In general, the total APC 
ON distributed per route across days of a week do not seem to follow a general 
distribution.

Figure 5-32  Aggregated APC values for boarding buses on Route 769 per each day 
of week (Tuesday and Thursday service only)
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Figure 5-33  Aggregated APC values for boarding buses on Route 714 per each day 
of week
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Figure 5-34  Mean APC values for boarding buses on Route 769 per each day of week 
(Tuesday and Thursday service only)
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Figure 5-35  Mean APC values for boarding buses on Route 714 per each day of week

Using the bar plot function, we plotted histograms for the distributions of the 
aggregated number of different transaction types of riders when using the 
bus services across the month of March and across different hours of a day 
to examine when bus service is the most useful means compared to other 
alternative options. Counting through the list of transaction status ("Success,” 
"Pass First Use," or "No Payment") for each transaction, we observed that in the 
distribution of daily trip types in March, 82% among 404,643 total riders who 
use Ventra’s fare card in March had to re-charge the card before trying it again or 
paid the fare with Ventra’s application on a smartphone. Such transactions were 
classified as "No Payment" in the "Trans-status" column. The distribution of the 
average number of transactions for each of the three statuses per day in March 
also showed a clear domination of a "No Payment" transaction, while the other 
two categories were equal. These results imply that a majority of riders are 
frequent riders, but either are too busy to care about the remaining balance on 
their cards or they all switch to Ventra’s app on a smartphone for convenience 
(i.e., no need to carry Ventra card with them every time they travel). In addition, 
the distribution of the average number of transactions per each transaction 
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type per different hours of a day also show the same pattern: the majority of 
transaction types were classified as "No Payment" and a very small percentage 
of people used Ventra cards for the first time during March 2016, as evidenced 
through the small number of "Pass First Use" transaction status. Finally, to 
avoid potential biases from observing trends of only average data, we also 
plotted the bar plots for the distribution of total number transactions per each 
transaction type per each day of a month and each hour of a day to examine 
whether the same pattern observed from the bar plots of the average number 
of transactions repeated for this type of aggregated data. Indeed, the same 
pattern still held for the types of riders and their habits when using PACE’s bus 
service. 

We applied the same analysis to the trip types data to know how efficient 
PACE’s bus service is in serving local commuters by examining whether a 
majority of riders were using PACE buses for multi-ride or single-ride trips to 
aid the inference on the purpose of each individual trip. To do this, we plotted 
the histograms for the total and average number of trips per each trip type to 
observe their distributions and how they vary daily and hourly. Although the 
average number of trips per each trip type were approximately distributed 
in the ratio of 2: 1 for single-ride (sum of trip type labeled "0" and "2" on the 
histograms) to multi-ride trip per hours of a day and per days of March, the total 
number of trips per each trip type showed a completely different pattern—the 
majority of riders opted for trip type labeled "2,” which is a single-ride trip, 
especially at 7:00 am, which is the usual time where most people get to work, 
and at 5:00 pm, the time people go home. An extremely small number of riders 
had transfer between buses, which were labeled as "1". Gathering all the above 
insights, we concluded that the majority of riders opted for single-ride trips 
during March 2016 and very few opted for transfer-trips. This implies that riders 
mostly use PACE buses as a means for commuting between home and work 
but rarely for other activities such as grocery, laundry, shopping, etc. Finally, 
by using the ggmap library, we also generated a heat map for trip types and 
transaction types to observe more clearly their flows geographically. 

Finally, using the ggmap package in R, we generated several heat maps for the 
average and total "ON" count per hour of a day, day of a month (i.e., March 2016), 
and day of a week to gain a better understanding about the spatial locations 
where people can travel by using PACE buses around Chicago (note that the 
Ventra dataset contains all buses from 9 garages across Chicago). We observed 
the following results. 

The heat map of average "ON" count per hours of a day shows that only a few 
people (between 2 and 4), on average, get off at locations scattered across 
the region with lat x lon ≈ [41.6,42.2] × [−88.4,−87.5] at any hours between 
5:00 am and 9:00 pm. Only in the very early morning (12:00– 4:00 am and 
10:00–11:00 pm), the locations for those people getting off are narrower, mostly 
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concentrated in region with lat x lon ≈ [41.6,42.0] × [−88.0,−87.5]. In addition, the 
heat map almost shows heat scattered all over the places in the region with lat 
x lon ≈ [41.6,42.2] × [−88.4,−87.5], and very little heat in regions with lat x lon ≈ 
[42.0,42.2] × [−87.8,−87.75] and [41.7,41.8] × [−87.65,−87.7]. We also examined the 
heat map of total "ON" count per hours of a day to verify if the same pattern 
persists. We realized that the total number of people travel during the early 
morning (from 12:00–5:00 am) is the smallest (between 1000 and 2000 people). 
Starting at 6:00 am, much greater heat appears over some separate sub-regions. 
The peak of the "heat" (between 4000 and 6000 people) o was at 7:00 am, 
and it occurred at three sub-regions with lat x lon ≈ [41.7,41.8] × [−88.2,−88.1], 
[41.8,41.9] × [−87.9,−87.7] and ≈ [42.0,42.1] × [−88.0,−87.9]. This implies that even 
though the average distribution does not show heat over those regions, there 
was a huge number of people traveling to particular locations at three distinct 
hours—7:00 am, 3:00 pm, and 4:00 pm. Since these hours tend to correspond 
to the time when people get to and from work/school, this might be the main 
reason for the source of our heat map. At other times, many fewer people travel, 
and they travel to many difference places scattered across the Northern part of 
Chicago. 

The heat map of average "ON" count per each day of March 2016 has the heat 
on different sub-regions on each day (for example, on 03/15, the heat region 
was lat x lon ≈ [−87.7,−87.6] × [41.8,41.9] whereas on 03/28, the heat region was 
≈ [−87.7,−87.6] × [41.7,41.8]). However, the heat map of total "ON" count per 
each day of March shows the heat, whose peak was around 1000, coming from 
a unique sub-regions with lat x lon ≈ [−87.9,−87.8] × [42.0,42.1] over every days 
of March except on the four Sundays when there were no heat (03/06, 03/13, 
03/20 and 03/27). This means there was a large number (i.e., 1000 or so) of riders 
getting on a fixed-route every day except Sunday, and their destinations were 
concentrated into a unique sub-region in the Northwest direction of Chicago. 

The heat map of average "ON" count per days of a week shows a uniform 
distribution of the heat source over the weekday (Monday–Friday), with the 
heat region ≈ [−88.3,−87.8] × [42.0,42.4], but different heat regions with lat x lon 
≈ [−88.3,−87.8] × [42.0,42.4] and [−88.1,−88.0] × [42.0,42.1] were shown on the 
weekend. This means that, on average, riders travel to the same location during 
a weekday (most likely for going to work), and only travel to other locations for 
other activities during weekend. The heat map of total "ON" count per days 
of a week show the same pattern (with different sub-regions whose lat x lon ≈ 
[−87.9,−87.8] × [42.0,42.1]) and ≈ [−87.9,−87.8] × [42.3,42.4]). This implies people 
use PACE bus mainly during the weekday, and this intuitively makes sense: 
on weekdays, they would need to go to work, so the locations where the heat 
sources were during those days are most likely that of their work office. On the 
weekend, they probably prefer using alternative services for better convenience 
and flexible in time. 
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Differences between APC and Ventra Datasets 
Even though APC and Cubic’s Ventra datasets all contain information about 
bus trips and number of riders on/off at each stop, they are quite different in 
many aspects based on how they were collected. First, since APC data were 
recorded from two main sources—information stored on a card swiped by 
each on-boarding customer and the two sensors attached to the doors of 
each bus for the number of passengers getting off at each bus stop. However, 
certain problems could arise; for example, some cash transactions might be 
missed, or some buses may have either the sensors or the machine might 
malfunction at certain time periods where the data was collected. This means 
the APC ON and/or OFF data are quite noisy, which explains the motivation to 
develop a Bayesian-based forecasting model. In addition, due to the regulation 
requirements on the fairness of distributing buses to everyone regardless 
of their gender, income, and social status, no buses were assigned the same 
route on two successive days. For this reason, the individual APC ON/OFF data 
recorded were not quite meaningful and, thus, categorizing the entire APC 
dataset based on different route numbers was the most reasonable choice. 
Finally, the number of categories of the APC dataset was quite large (81 different 
categories), as all buses come from all nine garages across Illinois, and the 
number of observations was around 69.4 million, representing the entire year of 
2015, which was quite sufficient for conducting the data analysis. 

On the other hand, collaborators at PACE were able to obtain Cubic’s Ventra 
dataset by extracting the information recorded on the Ventra cards tapped by 
on-boarding customers. This resulted in missing a number of customers getting 
off at each bus stop. However, there are several advantages of this dataset 
compared to the APC dataset: first, the APC ON has much less noise and 100% 
coverage. Second, it includes buses coming from different garages across 
Chicago (rather than from only one garage), so many areas not covered earlier in 
the APC dataset were covered in this dataset. Third, it has much larger number 
of qualitative categories for each observation (88 total) but with only 184,318 
observations. Fourth, all buses covered do not encounter the same situation 
that occurs in the APC dataset; that is, in the Ventra dataset the same bus could 
be assigned to the same route on two successive days. With these advantages, 
we expected to have a better data visualization on the flow of people across the 
entire city of Chicago (unlike the case of the APC dataset where the results were 
valid only in the Northwest region). However, there are two disadvantages of 
the Ventra dataset compared to APC dataset. First, the data were recorded only 
every 30 seconds, which means that riders might get on at different positions, 
but correspond to the same bus stops. So it was necessary to prepare the 
data by aggregating across the number of counts whose recorded locations, 
evidenced through latitude and longitude, were actually closest to the same 
bus stop. Second, in the column "Transaction Status,” approximately 83.4% of 
the transaction with "No Payment" status were labeled as "Success" in another 
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"Transaction Status2" column and resulted in additional "ON" counts. Thus, 
the total "ON" count might be exaggerated by a large margin, but this means 
we must delete a significant amount of the current dataset to circumvent this 
problem. After removing all rows containing all data points with that transaction 
status, the total number of observations of the Ventra dataset was 67,083, an 
83.4% decrease from the original size of the Ventra dataset. We then plotted the 
histograms to observe if there was any change to the above conclusion on the 
distributions of the "ON "count per hour of a day, days of a week, and days of 
a month in the new Ventra dataset. Fortunately, only the three histograms for 
the average "ON" count changed from non-uniform distribution to completely 
uniform distribution (which makes sense, as each successful transaction status 
equals to one count), while those for the total "ON" counts did not change its 
pattern (only the actual total counts changed, which is obvious). 
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Integer Programming Model  
for Bus Vehicle Routing Problem 
for Emergency Response6  
Introduction 
This section presents an integer programming (IP) model for the bus vehicle 
routing problem for emergency response in a transportation network. 
Specifically, under an emergency event, this IP model can be used to design 
an optimal bus systems by selecting best vehicle routes and schedules 
(i.e., patterns and trips) such that allowing impacted passengers (i.e., travel 
requests) to board and dwell at available stops along an optimized bus trip as 
well as to transfer between different buses to their final destination. 

Definitions 
To describe the problem in the section, following are the key concepts, as 
illustrated in Figure 6.1: 

• Route is a set of bus stops that a bus vehicle can pickup and drop-off
passengers.

• Pattern is a predefined sequence of bus stops for a bus vehicle to travel
in the system; usually, a route can have several patterns to satisfy travel
demands in the network under different scenarios.

• Trip is time schedule of a single journey made by a bus vehicle between
two end points (i.e., stops) of a specific pattern; a trip must go through
each bus stops in a route in the order defined in a specific pattern.

• Request is a tuple with six elements including identity (i.e., ID), number
of passengers, origin and destination stops, and desired departure time
window of the request; all passengers in a request should be picked up
and dropped off as an unseparated group.

As each bus trip must follow a specific pattern, a bus trip may not travel 
from directly from a request’s origin stop to its destination stop. Therefore, 
a travel request may need to transfer from one bus trip to another bus trip. 
Due to passengers not preferring to have many transfers from their origin to 
destination, the upper limit for the number of transfer time must be specified 
as a predefined number. To account for the transfer problem, we decomposed 
the original request into a sequence of sub-requests, as in Figure 6.2. The 
definition of a sub-request is as follows: 

6 Authored by Kuilin Zhang and Qinjie Lyu, MTU.
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• Sub-request is a tuple with four elements related to the original request.
The elements include the request identity (i.e., ID) of the original request,
the order index of the request in the original request, the origin and
destination stops.

Figure 6-1  Concepts of route, pattern, trip 

Figure 6-2  Illustration of sub-request 
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Notation Set
𝓐: Set of links in the transportation system 
𝓟: Set of patterns in the transportation system 
𝓣: Set of available bus trips in the transportation system 
𝓢: Set of bus stops in the transportation system 
𝓠: Set of travel requests 

Data: 

𝑺: Number of bus stops 
𝑷: Number of patterns 
𝑸: Number of travel requests 
𝑻: Number of bus trips 
𝑽: Number of bus vehicles 
𝑳: Maximum time period 
𝑪: Capacity of a bus trip 
𝑲: Maximum number of transfers for a travel request 
𝒍(𝒑, 𝒊, 𝒋): Stops connectivity from stop 𝒊 to stop 𝒋 in pattern 𝒑 
𝒑𝒐(𝒑): Origin stop of each pattern 
𝒑𝒅(𝒑): Destination stop of each pattern 
𝒒𝒐(𝒒): Origin stop of each request 
𝒒𝒅(𝒒): Destination stop of each request 
𝒒𝒂(𝒒) : The earliest time for each request 𝒒 to be picked up 
𝒒𝒅(𝒒): The latest time for request 𝒒 to be picked up 
𝒒𝒏(𝒒): The number of passengers in a request 𝒒 
𝒄(𝒊, 𝒋): travel cost in the network from stop 𝒊 to stop 𝒋 
𝒕𝒕(𝒊,𝒋): travel time in the network from stop 𝒊 to stop 𝒋 
𝒅(𝒊): Service time at a stop 𝒊 

Decision Variables: 

𝒙(𝒕,𝒑): Binary decision variable of trip 𝒕’s choice of pattern 𝐩 
𝒘(𝒕,𝒒,𝒌, 𝒊, 𝒋): Binary decision variable of whether trip 𝒕 takes the 𝒌th sub-
request of request 𝒒 and travels from stop 𝒊 to stop 𝒋. 
𝒚(𝒕,𝒊): The time schedule for a trip 𝒕 arrive stop 𝒊. 
𝒛(𝒕,𝒊): Number of passengers on the trip 𝒕 after stop 𝒊. 
𝒓(𝒒, 𝒌, 𝒊): Binary decision variable of whether the 𝒌th sub-request of request 𝒒 
is originated from stop 𝒊. 
𝒗(𝒒, 𝒌, 𝒊): Binary decision variable of the action (i.e., get on or get off) of the 𝒌th 
sub-request of request 𝒒 at stop 𝒊. 
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𝒖(𝒕, 𝒒,𝒌): Binary decision variable of whether 𝒌th sub-request of request 𝒒 
takes bus trip 𝒕.

Problem Statement 
Given a transportation network 𝑮(𝓝,𝓐), we consider a set of bus trips and 
patterns need to be selected to be used in a bus transit system to pick up and/
or drop off a set of travel requests 𝓠 during a time period 𝑳. Each request 𝓺 in 
𝓠 consists of request identity (i.e., ID) 𝒒, origin bus stop 𝒒𝒐(𝒒) , destination bus 
stop 𝒒𝒅(𝒒), the earliest time 𝒒𝒂(𝒒) to be picked up, the latest time 𝒒𝒃(𝒒) to 
be picked up, and the number of passenger 𝒒𝒏(𝒒). A pattern 𝒑 is a predefined 
sequence of stops for a vehicle to travel one stop by one stop. Each bus trip 𝒕 
should follow a specific pattern and can only pick up the request at the stops 
in the pattern 𝒑. In order to make sure all travel requests could be transferred 
to their final destinations, the travel requests are allowed to transfer between 
bus trips. To allow the transfer between one bus trip to another, each request 𝒒 
will be divided into several sub-requests, each sub-request (𝒒, 𝒌) can be directly 
picked up from its origin to its destination by a single bus trip 𝒕. For each sub-
request, the time window is the same as its original request. The number of 
passengers in the sub-request is the same as the original request. 

When an extreme event occurs and results in several disrupted stops in the 
transportation network, the impacted bus trips have to be rescheduled to 
satisfy the impacted travel demand. The objective is to optimize the adjustment 
of scheduling and routing (i.e., bus trip and patterns) in the bus transit system 
to minimize the total cost of all bus trips while avoiding reaching the disrupted 
stops and satisfying all the travel requests. 

Assumptions are as follows. 
• Assumption 1 – The network constructed by all patterns is connected,

which means there is a path between any two stops.
• Assumption 2 – A sub-request cannot be further divided to smaller

requests, which means that all the passengers in the sub-request should
be picked up or dropped off at the same time.

• Assumption 3 – A bus trip can pick up and drop off travel requests at each
stop along its route.

Model Formulation 
The objective of this model is to minimize the total travel costs of all bus trips, 
which is defined as in Eq. (1): 
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Where c(𝑖, 𝑗) is the travel cost between stop 𝑖 and stop 𝑗. 

We have the following constraints to ensure the optimal patterns and trips can 
satisfy the impacted travel requests. 

The first sub-request must depart from request q’s origin stop. 

 

The first sub-request must depart from request q’s origin stop. 

The last sub-request must arrive at the request q’s destination stop.

The sub-requests can take no more than one stop as its origin or destination 
stop.

 
  
The previous sub-request must arrive the origin stop of the subsequent sub-
request. 

If a sub-request arrives the request 𝒒’s destination stop, then there is no 
subsequent sub-request.

If stop 𝒊 is the origin stop of sub-request (𝒒,𝒌), 𝒗(𝒒, 𝒌, 𝒊) = 𝟏, if stop 𝒊 is the 
destination stop of sub-request (𝒒,𝒌), 𝒗(𝒒, 𝒌, 𝒊) = 𝟏, otherwise 𝒗(𝒒, 𝒌, 𝒊) = 𝟎

A trip can only use one pattern.
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If one trip cannot travel from stop 𝒊 to stop 𝒋, then the sub-request (𝒒,𝒌) cannot 
travel from stop 𝒊 to stop 𝒋. 

If a sub-request depart, then it must start from a stop 𝒊 except the 𝒒’s 
destination stop.

If a sub-request (𝒒, 𝒌) does not depart, then (𝒒, 𝒌) will not take any trip.

No request will go out from the stop 𝒊 if it is the destination of a sub-trip,

The sub-request (𝒒,𝒌) will go into the link 𝒊 if it is the destination of a sub-trip.

The sub-request (𝒒,𝒌) will not go out from link 𝒊 if it is the destination of a 
sub-trip. 	

If a sub-request (𝒒, 𝒌) could take trip 𝒕 traveling from stop 𝒊 to stop 𝒋, then the 
time when trip 𝒕 arrives stop 𝒊 must before the time when trip 𝒕 arrives stop 𝒋.
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If a sub-request (𝒒, 𝒌) could take trip 𝒕 traveling from stop 𝒊 to stop 𝒋, the time 
when a trip 𝒕 arrives the node 𝒊 should after the lower bound of the request’s 
desired pick-up time.

If a sub-request (𝒒, 𝒌) could take trip 𝒕 traveling from stop 𝒊 to stop 𝒋, the time 
when a trip 𝒕 arrives the node 𝒊 should before the upper bound of the request’s 
desired pick-up time.

The number of passengers on a trip 𝒕 should not exceed the capacity of the trip.

If a trip 𝒕 departures, then the number of passengers taken by this trip after the 
destination of the pattern chosen by this trip should be 0.

The number of passengers on a trip 𝒕 after arriving a stop 𝒊 could be expressed 
by 𝒘 as follows.

Model Reformulation 
In the model formulation, constraints (13)–(19) are nonlinear constraints. To 
solve the problem using existing off-the-shelf solvers, we reformulate those 
nonlinear constraints to linear constraints. The reformulated model is an integer 
linear program, which can be solved by existing solvers. This section presents all 
the reformulations and corresponding proofs of equivalence. 

Reformulation of Constraint (13) 
The constraint (13) is a classical if-else constraint, so it could be replaced by the 
following constraints. 
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P

So the two constraints equal to the original constraint. This ends the proof. 

Reformulation of Constraint (14) 
Constraint (14) regulates ∑ 𝒋∈𝓢 𝒘(𝒕,𝒒,𝒌, 𝒊, 𝒋) must be zero if trip 𝒕 takes sub-
request (𝒒, 𝒌) and sub-request (𝒒,𝒌) will arrive stop 𝒊. The constraint can be 
reformulated as constraint (24).
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Reformulation of Constraint (15) 
Constraint (15) regulates ∑ 𝒋∈𝓢 𝒘(𝒕,𝒒,𝒌, 𝒋, 𝒊) must be 1 if trip 𝒕 takes sub-
request (𝒒,𝒌) and sub-request (𝒒, 𝒌) will arrive stop 𝒊. The constraint can be 
reformulated as constraint (25). 

Therefore, the new constraint is equivalent to the original constraint. This ends 
the proof. 

Reformulation of Constraint (16) 
Constraint (16) regulate the relationship between 𝒘(𝒕,𝒒,𝒌, 𝒊, 𝒋) and 𝒗(𝒒, 𝒌, 𝒊). 
The constraint is also an if-else constraint, so it can be replaced by two linear 
constraints as follows. 
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Therefore, the new two constraints are equivalent to the original constraint. 
This ends the proof. 

Reformulation of Constraint (17) 
Constraint (17) describes the relationship between the arriving time of trip 𝑡 
at two adjacent stops. The constraint is an if-else constraint, therefore, it is 
equivalent to the following two constraints. 
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Reformulation of Constraints (18) and (19) 
Constraint (18) and Constraint (19) regulates the time when trip 𝑡 arrives the 
origin stop of the request 𝑞 should be in the feasible time window. The two 
constraints can be reformulated as the two following linear constraints. 

Therefore, the two new constraints are equivalent to the original constraints. 
This ends the proof. 

Solution Algorithm 
The procedures of solving the bus vehicle routing and scheduling problem is 
shown in Figure 6.3. The input and output files required in this algorithm are 
illustrated in Figure 6-4. The algorithm will take two sources of input files—
network data and travel demand and scenario data. All data will be fed into 
the optimization model to derive the optimal solution including the optimized 
trips (i.e., the schedule for each vehicle to arrive each stop in the chosen 
pattern). 
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Figure 6-4  Illustration of input and output files

Figure 6-3  Solution procedure
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The implementation first requires a transportation network. The transportation 
network contains bus transit stops and links, the transit stops are pickup and 
drop-off locations, and the transit links are the connections between two bus 
transit stops. The travel time along a transit link will be the time constraint 
for guiding the arriving time of a trip at the end stop of the transit link. The 
travel distance will appear in the objective to regulate the cost of all trips in 
this problem. Transit routes are sets of transit patterns, and each pattern is a 
sequence of stops that regulates the order of a trip to arrive each stop. 

The generated data includes two parts—a demand file, named as demand.
txt and providing the request information between stops, and a scenario file, 
named as scenario.txt and regulating the scenario such as event information, 
impacted routes, and disrupted stops. Each line in the demand file defines a 
riding request from a specific origin stop to a specific destination stop. Four 
important elements are specified in each request—origin stop, destination 
stop, departure time, and number of passengers to reflect the time-dependent 
demand. 

The problem tries to minimize the impact the event in the bus transit system by 
avoiding traveling through the impacted areas while satisfying all demand for 
some specific routes. The scenario file is to specify the event and the impacted 
area. The event information includes event start time, event end time, and a 
list of disrupted transit stop IDs. The list of impacted routes also needs to be 
specified; the stops along the impacted routes will be included in the model as 
impacted stops. The model will constraint the availability of these impacted 
stops according to the information provided in the scenario file. 

Based on the transportation network, the bus transit network and the 
generated data will be mapped into the modeling objects (i.e., parameters, 
variables, constraints, objectives) in AMPL. 

The non-linear integer optimization model will be reformulated as a mixed 
integer linear programming by a linearization method and then be implemented 
in AMPL. Several algorithms such as Bender’s decomposition and Branch-and-
Bound algorithm can be used to solve the problem. The existing solver (i.e., 
CPLEX) will take over the problem. The parameters are chosen carefully to make 
the solver solve the problem efficiently. The solutions provide the optimal trips. 
The result will be written into the original database file. 

Numerical Results 
The algorithm is implemented using the C++ programming language by calling 
the AMPL language and the Cplex solver. It is run on a 2.2 GHz Xeon computer 
with 512 GB of memory. 
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We selected one route named as “Warrenville-Naperville Metra” operated by 
Pace. The route is shown in Figure 6-5. There are X stops in the route, and 10 
patterns are defined for this route. The details of the experiment are shown in 
Table 6-1. 

Figure 6-5  Pace 626 line 

Table 6-1  Settings of Experiment  

Route Pace 262 
Number of stops 222 
Number of patterns 10 
Maximum number of transfers 2 
Maximum time period 1000 
Capacity of each pattern 500 
Average speed on link 50 ft/sec
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To test the performance of the model in different scenarios, we generated 
different scenarios by changing the number of requests and number of trips in 
this model. To ensure each pattern was chosen by a trip, for the 2, 3, 4 scenarios, 
the number of trips was set as 69, the same as the number of patterns. The 
settings of the test scenarios are shown in Table 6.2.

The linear integer programming problem was solved by Branch-and-Cut 
algorithm in CPLEX called by AMPL. The results for different scenarios are shown 
in Table 6-3. All scenarios had optimal solutions. With the increase of the size 
of the problem, the number of iterations, number of nodes explored in Branch-
and-Cut node tree, number of variables, and number of constraints increased 
greatly. Therefore, the CPU time of solving the problem grows greatly.

Conclusion 
This section presented an integer programming (IP) model formulation for the 
bus re-routing and rescheduling problem in a disrupted transportation network. 
The proposed model can optimally select a set of bus trips and patterns 
to satisfy impacted travel requests in an emergence event for emergency 
response. 

Table 6-2  Settings of Test Scenarios 

Route Test Case 
Number # of Requests #  of Requests

Warrenville-Naperville Metra 1 1 10
Warrenville-Naperville Metra 2 5 10
Warrenville-Naperville Metra 3 10 10

Table 6-3  Result of Test Scenarios 

Test Case 
Number # of Constraints # of Variables CPU Running 

Time (secs) Objective

1 47,356 14,141 39.2188 19518.5176

2 227,400 52,485 514.188 59639.0916
3 452,400 100,390 1208.58 92011.8388
4 902,460 196,200 125225 97141.1551
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Passenger Behavior in Response  
to Unplanned Transit Disruption7

Offering affordable, efficient, and green service, the public transportation 
infrastructure of every municipality acts as the veins of its transportation 
system. In the Chicago metropolitan area, the CTA provides service to over 
3.5 million riders in the city of Chicago and 35 suburbs surrounding the city 
(Chicago Transit Authority, 2017). CTA provides the nation’s second largest 
public transportation system which operates under a budget of $1.64 billion in 
2021 as per its web page at https://www.transitchicago.com/finance/. Also, the 
rail transportation system connects both major airports to the transit system in 
Chicago (Chicago Transit Authority, 2017). 

However, maintaining the competing quality of transit service is challenging. 
Private vehicles are typically the biggest competitor to transit service. 
Compared to private vehicles, service reliability, privacy, convenience, 
availability, and travel time are among the significant dis-utilities of transit 
service. Further, ride-hailing and ride-sharing services have changed the game 
in the transportation market. Today, not only do TNCs take market share from 
private transportation options, but they are strong competitors of the transit 
system. These services provide a wide variety of affordable, door-to-door 
options and, thereby, encourage transit users to substitute their conventional 
choice (i.e., public transit) with TNCs. 

This, along with the fact that transit service would not be economically viable 
unless adopted by enough customers (Berechman, 1993), demands shedding 
light on transit user satisfaction. Service disruptions, as one of the boldest dis-
utilities of a transit system, could cause serious damage to the rider experience 
(Lin et al., 2016a). Various internal and external factors might cause transit 
disruption (Lo and Hall, 2006; Mattsson and Jenelius, 2015). Examples of internal 
factors include the staff strikes, technical failures, periodic maintenance 
actions such as station renovations and railway signaling changes, and strategic 
planning efforts such as minor or major reroutes. External issues, on the 
other hand, are by nature less preventable. Natural disasters such as heavy 
snowfalls and thunderstorms, for instance, would considerably hinder the 
regular operation of the fleet, imposing delays to the whole system. Terrorist 
attacks could be considered as an instance of such disruptions. Depending on 
the design of the transit system and its schedule, subtle issues on the operation 
might end up in huge and considerable deterioration of the user experiment (Lo 
and Hall, 2006; Luo et al., 2018; Saxena et al., 2019). 

7 Authored by Nima Golshani, Ehsan Rahimi, Ramin Shabanpur, and Kouros Mohammadian, UIC; and 
Joshua Auld, Hubert Ley, UC, Argonne

https://www.transitchicago.com/finance/
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Literature Review 
The research on pre-planned or unplanned transit disruptions is a relatively 
new topic of research gaining growing attention in the past decade. A wide 
range of studies is found in the literature focusing on different aspects of 
transit disruption. Some scholars have focused on the effect of disruption on 
transportation network and transit ridership (Cadarso et al., 2013) and analyzed 
how transit authorities could recover the disrupted service efficaciously, while 
others have provided insight into the issue from the passenger point of view and 
analyzed how such disruptions could impact their travel behavior (Murray-Tuite 
et al., 2014; Saberi et al., 2018). 

Two types of transit disruption are considered in the literature. First, pre-
planned disruptions that may occur because of pre-planned activities such 
as maintenance and labor strikes (see, for instance, Pnevmatikou et al., 
2015; van Exel and Rietveld, 2009; Yap et al., 2018), and second, unplanned 
disruptions that are mostly due to natural disaster and terrorist attacks; this 
study focused on the first one. As the goal of transit authorities is restoring and 
managing the disrupted service efficaciously, disregarding passenger behavior 
and perceptions could lead to adopting a management strategy that is not 
optimal (Currie and Muir, 2017). Therefore, a couple of studies collected data 
and develop behavioral models for unplanned disruptions. A comprehensive 
literature review on transit disruption can be found in Rahimi et al. (2019). For 
instance, Lin et al. (2016b) revealed that travel cost, waiting time, duration of 
delay, income, and type of incident could affect transit user commuting mode 
choice during a subway service disruption in Toronto. Yet, little is known about 
how the users’ choices would affect the stability of the road network. This study 
aimed to fill the gap using activity-based simulation. 

Generally, three types of survey are used in the literature of transit disruption—
revealed-preference (RP), stated-preference (SP), and revealed preference-
stated preference (RP-SP) survey. 

As one of the first studies that conducted an RP survey to capture transit user 
behavior in response to unplanned transit disruption, Murray-Tuite et al. (2014) 
investigated the long-term impact of the deadly Metrorail collision on passenger 
behavior in 2009 in Washington, DC. Using a web-based survey, respondents, 
who had used Metrorail six months before the incident, were asked to specify 
what changes they made to their transit trips in terms of mode and seat location 
after the collision and found that 10% and 17% altered their mode of travel and 
their seating location in the same train, respectively. 

Due to a couple of limitations of RP survey, such as insufficient variation in the 
RP data to investigate all variables of interest (Kroes and Sheldon, 1988) and 
possibly strong correlations between explanatory variables (Kroes and Sheldon, 
1988), some scholars suggest an SP survey to reveal transit user behavior 
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during a service disruption. In an SP survey, respondents are asked to indicate 
their decisions when faced with hypothetical scenarios. For instance, Bachok 
(20008) conducted an SP survey from train passengers in Klang Valley, Malaysia 
to reveal the modal shift of rail users based on information of alternative modes. 
In this study, train passengers were asked to choose among a set of alternatives 
including other trains, shuttle bus, private vehicles, and wait for the restoration of 
the rail system in hypothetical scenarios. Fukasawa et al. (2012) investigated the 
effect of providing information such as estimated arrival time, arrival order, and 
congestion level on the modal shift in response to unplanned transit disruption 
using a data from an SP survey. They found that train users with access to the 
information had a higher frequency of shifting to other trains in comparison with 
passengers without access to the information. In contrast, Bai and Kattan (2014) 
conducted an SP survey on light rail transit riders in Calgary, Canada and revealed 
that respondents had more willingness to switch their transport mode if no 
information was provided to them regarding possible recovery period. 

Because RP surveys cannot investigate a wide range of variables of interest and 
SP surveys may not necessarily represent transit user behavior in a real service 
disruption (Kroes and Sheldon, 1988), some studies suggested combining both 
survey methods. For instance, Lin et al. (2016a, 2017) conducted a combined 
RP-SP survey in Toronto to analyze transit user mode behavior in response to a 
subway disruption. The RP section was devoted to respondents’ last experience 
with an unplanned service disruption and the SP section provided hypothetical 
disruption scenarios in which respondents were asked to either choose among 
alternative modes or cancel their trip. They revealed that travel cost, waiting 
time, duration of delay, income, and type of incident could affect transit user 
commuting mode choice during a subway service disruption (Lin et al., 2016a). 

Survey Design 
To investigate the behavior of transit riders to an unplanned service disruption, 
an RP-SP survey of Chicago metropolitan area transit riders was conducted. 
(For a complete discussion on the survey, refer to Auld et al., 2018.) In this 
survey, a web-based questionnaire was implemented that was accessible 
through a survey link and PIN. Respondents were intercepted at CTA bus and 
rail, Metra train, and Pace bus stations by employing a sampling plan developed 
considering average daily ridership as well as the information of boarding/
alighting (Auld et al., 2018). Participants who agreed to participate were given 
a contact card with a unique PIN which identifies the service, contact time 
and contact stop (Auld et al., 2018). By entering the survey link and the PIN, 
respondents were directed to the online questionnaire to provide the details 
corresponded to the intercepted trip. 

The survey has four primary components—person and household socio-
demographic variables, transit trip characteristics such as distance, travel 
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time, travel cost, in-vehicle activities, access/egress to transit, etc., transit user 
preferences towards transit and other modes, and hypothetical scenarios for 
disruption based on the intercepted trip. This survey used Google Maps API to 
gather reliable information about the origin and destination of the transit trip, 
transit routes, and travel time (Figure 7-1). By employing Google Map APIs, travel 
times, waiting times, number of transfers, etc., were automatically saved. 

This survey collected information about transit user experiences in using other 
mobility services in the Chicago metropolitan area, including TNCs (Uber, Lyft, 
etc.), taxis, car-sharing services (e.g., Car2go, Zipcar, etc.), and the city bike-
sharing program (DIVVY). For each mobility service, respondents were asked 
to provide information regarding the frequency of usage (in the Chicago metro 
area as well as while traveling), the duration of usage, which service they used if 
multiple options existed, and in-vehicle activities. 

Figure 7-1 presents an example of experience questions regarding TNC and taxi. 	  

Figure 7-1  Gathering transit trip information using Google Maps API – a) Identifying location of intercepted station; 
b) choosing coordinates of start/stop stations; c) selecting location before arrival to station; d) selecting location 
following departure from station (Adapted from Auld et al., 2018) (Map Data © 2018 Google)
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Design of SP Choice Sets 
The SP disruption response questions were constructed by considering the 
characteristics of the intercepted trip as the basis for a set of SP questionnaires with 
the random configuration of modal characteristics according to an experimental 
design. (For a complete discussion on the design of the survey, refer to Auld et al., 
2018.) Figure 7-2 shows an example of an SP disruption response scenario. 

As noted, the real-time information of the intercepted trip such as actual time 
of departure, real-time traffic congestion, and current transit schedule were 
collected by taking advantage of Google Maps API and then considering these 
values as a basis for generating the scenario values (Auld et al., 2018). In this 
survey, each respondent was given four random transit disruption scenarios. 

Figure 7-2  Example of experience questions regarding TNC and taxi (Adapted from 
Auld et al., 2018) 
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To generate SP disruption scenarios, two sets of parameters were defined. The 
first group of parameters were observed using the Google Maps API includes 
the drive time (𝑇𝐷𝑟𝑖𝑣𝑒

𝑡), drive distance (DDrive), and the transit time (𝑇𝑇𝑟𝑎𝑛𝑠𝑖𝑡
𝑡) 

based on the intercepted trip (Auld et al., 2018). The latter group of parameters, 
which were generated randomly for each SP scenario, includes the status of the 
original trip which was either canceled or delayed (S), transit travel time delay 
as a percentage of the original trip (D), the TNC surge pricing factor as a percent 
of increase in the base fare (P), taxi waiting time (𝑊𝑡𝑎𝑥𝑖), TNC waiting time (𝑊𝑇𝑁𝐶), 
and shuttle service waiting time, which is the percent of D due to waiting for the 
shuttle (𝑊𝑆ℎ𝑢𝑡𝑡𝑙𝑒) (Auld et al., 2018).

 
The parameter of transit travel time delay (D) was identified based on a random 
value r using the following rule (Auld et al., 2018):

Figure 7-3  Example of SP question regarding disruption scenario (Adapted from Auld et al., 2018)  
(Map Data © 2018 Google)
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Similar to the delay parameter, the TNC surge pricing factor was identified as 
follows (Auld et al., 2018):

The taxi waiting time was identified as follows (Auld et al., 2018):

The TNC waiting time was identified as follows (Auld et al., 2018):

Finally, the shuttle service waiting time was generated as follows (Auld et al., 
2018):

The values of the parameters above were then shown to the respondent. Note 
that both “change of destination” and “trip cancellation” as alternative options 
for disrupted services had no specifics (Auld et al., 2018). The “ask for ride” 
option used the drive time, with no additional cost. By selecting this option, the 
respondent was directed to enter the estimated waiting time for the pick-up 
(Auld et al., 2018). The “auto drive” alternative considered the drive time along 
with an additional travel time to pick up the vehicle based on its location, but 
this option was available only when the transit user indicated that there was an 
available vehicle (Auld et al., 2018). The rest of the parameters were estimated 
as follows. 

The wait times for a delayed transit trip and a shuttle transit trip were (Auld et 
al., 2018): 

For the shuttle trips, the new travel times were (Auld et al., 2018):
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The taxi and TNC fare (in dollars) were calculated considering the drive distance 
(Ddrive) as follows (Auld et al., 2018):

Data Analysis 
In the RP-SP survey, information for 659 individuals and 659 transit-based trips 
was successfully collected. The data had four primary components—person and 
household socio-demographic variables, intercepted transit trip characteristics 
such as distance, travel time, travel cost, in-vehicle activities, access/egress 
to transit, etc., transit user preferences towards transit and other modes, and 
hypothetical scenarios for disruption based on the intercepted trip. (For a 
complete discussion on the data, refer to Auld et al., 2018.) 

With respect to the gender, 46% of male and 54% of female participants who 
lived in the Chicago metropolitan area completed the survey. The data included 
72% full-time workers, 11% part-time workers, 3% unemployed, 3% retired, 9% 
students, and 2% other categories. In total, 17.87% of participant households 
had an annual income less than $35k, 46.16% between $35k and $100k, and 
the other 35.93% more than $100k per year. A full description of the sample 
with respect to household and individual demographic characteristics of the 
respondents is presented in Table 7-1 and Table 7-2, respectively. 
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Variables Frequency Percentage
HH size: 1 188 28.70%
HH size: 2 315 48.09%
HH size: 3 90 13.74%
HH size: 4 39 5.95%
HH size: 5 or more 23 3.51%
HH income: < $15,000 42 7.43%
HH income: $15,000–$35,000 59 10.44%
HH income: $35,000–$50,000 79 13.98%
HH income: $50,000–$75,000 85 15.04%
HH income: $75,000–$100,000 97 17.17%
HH income: > $100,000 203 35.93%
Housing type: mobile/manufactured 5 0.78%
Housing type: apartment 247 38.29%
Housing type: condo 96 14.88%
Housing type: townhome/duplex 47 7.29%
Housing type: single family 238 36.90%
Housing type: other 12 1.86%
Housing tenure: own/mortgage 288 46.01%
Housing tenure: rent 322 51.44%
Housing tenure: other 16 2.56%
Housing payment: < $500 37 6.60%
Housing payment: $500–$1,000 157 27.99%
Housing payment: $1,000–$1,500 153 27.27%
Housing payment: $1,500–$2,000 106 18.89%
Housing payment: $2,000–$3,000 69 12.30%
Housing payment: > $3,000 39 6.95%

Table 7-1  Household Demographic Characteristics
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Variables Frequency Percentage
Gender: male 298 45.57%
Gender: female 356 54.43%
Age: < 18 1 0.15%
Age: 18–24 115 17.48%
Age: 25–34 216 32.83%
Age: 35–44 129 19.60%
Age: 45–54 99 15.05%
Age: 55–64 79 12.01%
Age: 65–74 15 2.28%
Age: > 75 4 0.61%
Race: White/Caucasian 375 57.43%
Race: African-American 109 16.69%
Race: Hispanic/Latino 69 10.57%
Race: Asian 56 8.58%
Race: 2 or more ethnicities 27 4.13%
Race: Native American 4 0.61%
Race: other 13 1.99%
Marital status: single 312 47.56%
Marital status: married/domestic partnership 275 41.92%
Marital status: widowed 4 0.61%
Marital status: separated 7 1.07%
Marital status: divorced 40 6.10%
Marital status: other 18 2.74%
Education level: no high school degree, 12 grades or less 6 0.92%
Education level: high school graduate, diploma or equivalent 35 5.36%
Education level: some college credit, no degree 92 14.09%
Education level: trade or vocational school certificate 7 1.07%
Education level: associate’s degree 43 6.58%
Education level: bachelor’s degree 250 38.28%
Education level: graduate or professional degree 220 33.69%
Employment status: full-time 475 72.08%

Employment status: part-time 70 10.62%
Employment status: student 57 8.65%
Employment status: homemaker 4 0.61%
Employment status: retired 22 3.34%
Employment status: unemployed or looking for work 22 3.34%
Employment status: other 9 1.37%

Table 7-2  Individual Demographic Characteristics
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The survey collected detailed attributes for a randomly-intercepted transit trip 
in a typical day. Respondents were intercepted at a transit station (CTA bus, CTA 
rail, Metra, Pace) in the Chicago metropolitan area and were asked to provide 
information about the characteristics of transit trip as well as access and egress 
trips (Auld et al., 2018). Among all respondents, 53% were intercepted in CTA rail 
stops, 16% in CTA bus stops, 26% in Metra stops, and the remaining 5% in Pace. 
With respect to activity type, approximately 37% and 42% of the respondents 
were working or doing an in-home activity, respectively, at the origin of their 
intercepted trip. Also, more than 50% of the respondents had working activity at 
the destination of their intercepted trip. Figure 7-4 presents the distribution of 
activity types of both the origin and destination of the intercepted trip.

Figure 7-4  Activity types at origin and destination of intercepted trip (Adapted from 
Auld et al., 2018) 

The survey gathered information regarding arrival/departure time flexibility of 
the above activities. The analysis of the sample revealed that approximately 
21% and 29% of respondents had departure time flexibility from the origin and 
arrival time flexibility at the destination, respectively. Further, the majority of 
the departure times were between 6:00–9:00 am and 3:00–6:00 pm. Figure 7-5 
presents the distribution of departure time in the data.
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Figure 7-5  Departure time (Adapted from Auld et al., 2018) Auld et al., 2018) 

With respect to trip characteristics, the survey also collected travel distance, 
travel time, and number of transfers in the respondents’ transit trip. Figure 7-6 
presents the distribution of the number of stops in the intercepted trip, with 
around 67% of respondents having no transfer in their intercepted trip. Further, 
Figures 7-7 and 7-8 show the distribution for travel distance and travel time in the 
data, respectively. According to Figure 7-7, approximately 22% of the intercepted 
trips were less than 5 miles and around 7% were more than 30 miles.

Figure 7-6  Number of transfers during trip 
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Figure 7-7  Travel distance 

Figure 7-8  Travel time

Respondents were also asked about the mode they used to get from the origin 
to the initial transit station and from the last transit station to the destination. 
Walking was the prominent mode of transport (67.83% for trip to initial transit 
stop and 85.13% for trip from last transit stop to destination) due to the close 
proximity of the origin and destination to the transit stops (Figure 7-9 and 
Figure 7-10).



FEDERAL TRANSIT ADMINISTRATION 	 174

SECTION  | 7

Figure 7-10  Travel distance between last transit stop and destination

Figure 7-9  Travel distance between origin and initial transit stop 

Respondents were asked to indicate the amount of time they spent on different 
activity types while on board the intercepted transit vehicle, including reading a 
book/newspaper, doing work or school-related activities, using a smartphone/
tablet/laptop for entertainment, talking on the phone, socializing, and relaxing 
Rahimi et al. (2019). Table 7-3 shows the distribution of in-vehicle activity types 
and duration in the data. Per the analysis, using a smartphone/tablet/ laptop, 
reading, and relaxing were the most preferred activities. 

Respondents also were asked about their reasons for selecting transit as their 
mode of travel. Fastest option to reach the destination, no need to worry about 
parking, and lower travel cost were the most influential reasons for more than 
half of the respondents. 
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To explore respondent opinion about transit systems, they were asked 
attitudinal questions about the potential benefits of and concerns of public 
transit and to indicate their level of agreement with a couple of statements 
about public transit. Figure 7-11 presents the distribution of respondent 
answers, indicating that less concern about parking and traffic conditions 
and more productive use of time while traveling were the most common 
opinions about transit systems. On the other hand, people had mixed opinions 
with regards to privacy restrictions in the transit system. According to Fig. 9, 
approximately 30% of respondents somewhat agree or completely agree that 
public transit restricts privacy and about 40% disagreed with this statement.

In addition to collecting information regarding the characteristics of transit-
based trips, respondent attitudes during a possible disruption of the transit 
system were also collected. Respondents were first asked to state how long 
they are willing to wait for the transit system to be restored before they started 
to think about alternative modes in two conditions—with no information from 
the transit agency and if the transit agency provided information regarding the 
delay. Figure 7-12 presents the distribution of willingness to wait under the two 

Table 7-3  Duration of In-Transit Activity (Adapted from Auld et al., 2018) 

Activity Type None
Very little 

of the 
time

Some 
of the 
time

Most of 
the time

All of the 
time

Reading 68.74% 6.22% 10.17% 10.77% 4.10%
Using smartphone for entertainment 20.03% 11.53% 23.52% 28.83% 16.08%
Talking on phone 83.92% 7.28% 6.53% 1.52% 0.76%
Work-related activity 79.21% 7.13% 9.86% 2.73% 1.06%
School-related activities 91.50% 2.58% 4.25% 1.21% 0.46%
Socializing or talking with others 81.18% 5.77% 7.44% 3.49% 2.12%
Relaxing /doing nothing) 44.31% 13.66% 25.19% 10.62% 6.22%
Other 93.17% 2.12% 3.03% 0.61% 1.06%

Figure 7-11  General opinions on public transit
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conditions, indicating that people tended to wait for higher durations when the 
transit agency informed them of the delay.

Because the respondents’ source of information for receiving emergency 
updates was significant in their behavior at the time of possible disruption, 
they were asked to indicate their level of agreement with statements regarding 
various sources of information. Figure 7-13 illustrates the distribution of 
respondent level of agreement, showing that approximately 75% either 
somewhat or completely trust emergency updates from officials and more than 
90% would somewhat or completely follow instructions from officials.

Figure 7-13  Respondent trust in various sources of information 

Finally, participants were given four stated choice experiments for various 
hypothetical scenarios and were asked to select the most preferred choice given 
the designed attributes: 

• Wait for the shuttle bus
• Change other trip attribute

– Change destination
– Cancel trip

Figure 7-12  Willingness to wait for transit system to be restored 
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• Change mode
– Ask for a ride
– Auto drive
– Use taxi
– Use TNC

Figure 7-14 presents the distribution of the first level alternatives and Figure 7-15 
shows the distribution of different types of alternative modes in the sample. 

Figure 7-14  Respondent first-level alternatives  

Figure 7-15  Alternative modes in case of modal shift espondent first-level 

Model Estimation and Results 
In this study, we were interested in predicting and simulating the transit user 
behavior in response to an unplanned service disruption. According to the SP 
scenarios provided to each respondent, we proposed a decision tree (DT) model 
structured in three-level. The upper level determines whether the transit user 
decides to cancel or perform his/her trip if the trip is disrupted, the next level 
determines if the user decides to change the destination provided that the trip 
is not canceled, and the last level estimates the alternative mode being chosen 
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given that the destination is not changed. The alternative modes were waiting 
for the shuttle bus, TNCs (e.g., Uber and Lyft), friend/family pick up, personal 
vehicle, and taxi. 

A decision tree is a classifier that generates a tree and a couple of rules, 
representing the model of different classes using a given data. A typical DT 
structure includes three elements—each “internal node” represents a test on an 
attribute, each “branch” denotes an outcome of the test, and each “leaf node” 
represents the distribution of class(es) (Han et al., 2011). A couple of advantages 
are stated in the literature for DT classification models. First, because of their 
intuitive representation, the outcome of a DT model is easy to implement 
(Breiman et al., 2017). Second, it is not required for a modeler to specify any 
parameter and, thus, DT models are suitable for investigative knowledge 
discovery. Third, DT models are relatively high in terms of accuracy; also, they 
are fast as far as model development is concerned (Breiman et al., 2017; Han et 
al., 2011). 

In DT models, a dataset is classified by directing it from the root of the tree 
down to a leaf with respect to the outcome of the tests along the path (Rokach 
and Maimon, 2008). A DT structure starts from the root node, and then the 
test is applied (i.e., a locally optimum decision about which attribute to use for 
subdividing the data) to the data. The appropriate branch is followed based 
on the outcome of the test. Gini Index, Entropy and Misclassification Error are 
commonly used measurements to choose an appropriate attribute (Tan, 2018). 
Then, the branch leads either to another internal node or a leaf node (Tan, 2018). 
When the leaf node is reached, the class label related to the leaf node is then 
assigned to the observation. 

To develop a DT model, a dataset is divided into two different samples, including 
a training sample and a testing sample. The samples are used to generate the 
tree and evaluate its performance, respectively. As the training sample size and 
the predictive performance are positively correlated, data scientists usually 
prefer to use the largest possible training sample (Rokach and Maimon, 2008). 
However, due to some dataset limitations, especially in small ones, the training 
sample might be limited because the rest of the sample (i.e., testing sample) 
should include all available classes adequately. This study used 80% and 20% of 
the dataset for the training sample and the testing sample, respectively. 

Bias in model development is one of the most critical issues in classification 
methods and usually occurs due to using an imbalanced dataset. A dataset is 
imbalanced if the classes are not approximately equally distributed. Our dataset 
was imbalanced because only around 10% of the respondents either canceled 
their trip or changed their destination. Then, before developing the first-level 
and second-level DT models, the problem should be addressed. A couple of 
methods are proposed in the literature to avoid the biasedness of DT models. 
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Table 7-4  Example of Two-Class Coincidence Matrix for a Classification Problem 

For instance, assigning distinct costs to training samples (Pazzani et al., 1994) 
and either oversampling the minority class or under-sampling the majority class 
(Kubat and Matwin, 1997) are widely implemented in the literature to address 
the issue. In this study, the oversampling method was used via the SMOTE 
algorithm (see Chawla et al. 2002). 

In this study, the three DT models were developed using Scikit-learn module 
(Pedregosa et al., 2011) in Python programming language. Table 7-4 presents 
the attributes used in the DT models. In the DT model developments, Entropy 
measurement was selected as the test condition. Two different approaches 
were employed to develop the DT model for each level. In the first approach, 
the number of leaves and the depth of the tree were restricted; in the other, 
no values were set for those parameters, and the DT models were developed 
without restrictions. Figures 7-16 and 7-17 represent an example of a restricted 
DT structure for the first-level (i.e., performing trip) and the second-level (i.e., 
changing destination).

Figure 7-16  Restricted DT model for first level (performing or canceling trip) 

True Class
Positive Negative

Predicted 
class

Negative True positive count (TP)
False positive count (FP)

False negative count (FN)
True negative count (TN)Positive



FEDERAL TRANSIT ADMINISTRATION 	 180

SECTION  | 7

Several performance measurements are suggested in the literature to evaluate 
a classification model. In this study, a couple of widely used performance 
measurements were estimated, including Accuracy, Precision, Recall, and 
F-measure to select the outstanding DT model for each level. These are
calculated by employing a coincidence matrix. Table 7-5 presents a coincidence
matrix corresponding to a two-class classification model.

Figure 7-17  Restricted DT model for first level (performing or canceling trip) 
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Name Definition Mean Std. Dev.
Demographics

AGE_M65 1: if age of transit user is more than 65/ 0: otherwise 0.03 0.17
male 1: if gender is male/ 0: otherwise 0.45 0.50

Bachelor 1: if transit user has bachelor’s degree/ 0: otherwise 0.38 0.49
M_Bachelor 1: if transit user has master’s degree or more/ 0: otherwise 0.34 0.47

inc_U15 1: if  household income is less than $15K/ 0: otherwise 0.06 0.244
inc_15_35 1: if household income is between $15K and $35K / 0: otherwise 0.09 0.29

inc_75_100 1: if household income is between $75K and $100K /0 otherwise 0.18 0.38
inc_M100 1: if household income is more than $100K/ 0: otherwise 0.33 0.47
full_emp 1: if transit user is full-time worker / 0: otherwise 0.72 0.45
Student 1: if transit user is student/ 0: otherwise 0.088 0.28
Dlicense 1: if transit user has driver license/ 0: otherwise 0.86 0.35

Trip Characteristics

DriveDistance Distance between trip origin and destination in miles (range between 0.39 
and 59) 16.45 26.87

DriveTime Estimated travel time between origin and destination (min) 35.92 29.12
home_a 1: if activity type at destination is in-home activity/ 0: otherwise 0.23 0.42
work_a 1: if activity type at destination is work activity/ 0: otherwise 0.47 0.50

flexible_a 1: if transit user has time flexibility for arrival at  destination/ 0: otherwise 0.70 0.46

Activitydur_d Activity duration at origin before going to transit station (in min) (range 
between 0 and 23 hrs) 7.17 5.06

trip_regular 1: if transit user makes this trip regularly/ 0: otherwise 0.84 0.37
trip_alone 1: if transit user traveling alone/ 0: otherwise 0.86 0.35

veh acc 1: if transit user has access to his/her car to make trip/ 0: otherwise
SP Variables

OptTransitWait Wait time for delayed/replaced transit service (min) 57.35 121.66
OptTaxiCost Taxi fare if transit user want to make trip using taxi 39.61 60.50
OptTNCCost TNC fare if transit user wants to make trip using TNC 52.46 91.86

Table 7-5  Variables Used in DT Models 

Performance  
Measurement

Alternatives
Perform Trip Cancel Trip

Accuracy 85.31%
Precision 88.65% 53.33%

Recall 95.08% 31.58%
F1-Score 91.75% 39.67%

Table 7-6  Performance Measurements for First-Level (Performing Trip) DT Model 
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DT models provide not only good accuracy but also offer rich attribute 
importance information that could be used where the interpretability of the 
model is paramount (Kazemitabar et al., 2017). For an attribute, the importance 
score (or tree weight) is calculated in a DT model by summing the impurity 
reductions over all nodes where a split is made on the attribute with respect to 
the size of the node (Kazemitabar et al., 2017). 

Per the results for the first-level DT model, the dummy variable of work activity 
at the destination was the most influential attribute on the performing the 
disrupted trip. According to Figure 7-18, having the arrival-time flexibility at 
the destination, the dummy variable of in-home activity at the destination, the 
distance between the origin and the destination, and the waiting time of the 
delayed/replaced service were ranked in second to fifth place, respectively. 

Performance 
Measurement

Alternatives
Does Not Change 

Destination
Changes 

Destination
Accuracy 98.36%
Precision 98.63% 87.50%

Recall 99.54% 70.00%
F-1 Score 99.08% 77.78%

Table 7-7  Performance Measurements for Second-Level (Changing Destination) DT 

Performance 
Measurement

Alternatives
Ask for Ride Ask for Ride Shuttle Auto-drive Bus TNC Taxi

Accuracy 58.27%
Precision 37.84% 44.44% 74.59% 41.46% 27.08%

Recall 41.18% 47.06% 70.82% 38.64% 39.39%
F1-Score 39.44% 45.71% 72.65% 40.00% 32.10%

Table 7-8  Performance Measurements for Third-Level (Mode Choice) DT Model 
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 The second-level DT model reveals that the waiting time of the delayed/
replaced service, having the arrival-time flexibility at the destination, and the 
dummy variable of in-home activity at the destination are the most important 
attributes to develop the second-level DT model (Figure 7-19). In addition, 
having an income of more than $100k, the duration of activity at the origin, the 
trip distance, and the TNC fare as an alternative mode for the disrupted trip play 
a critical role in deciding whether to change the destination of the disrupted trip 
or not.

Figure 7-18  Importance of variables used in first-level DT model
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Per the results of third-level DT model, the TNC fare as an alternative mode for 
the disrupted trip and the waiting time of the delayed/replaced service are the 
most influential factors on the selecting the alternative mode for the disrupted 
transit service (Figure 7-20). Also, the trip drive time and distance, as well as 
the duration of activity at the origin, are the key attributes to predict the mode 
behavior of the respondents.

Figure 7-19  Importance of variables used in second-level DT model 

Figure 7-20  Importance of variables used in third-level DT model 
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Analysis of Evacuation Destination and 
Departure Time Choices for No-Notice 
Emergency Events8  
This section presents a joint discrete-continuous model of evacuation 
destination and departure time choices in the context of no-notice emergency 
events. These two critical decisions can directly influence spatial and temporal 
traffic distributions in the network in case of emergency events. The joint 
structure is proposed to explore the interdependencies between these 
evacuation attributes that stem from the shared factors influencing them and/or 
the causal effects that they might have on each other. The proposed joint model 
comprises a multinomial logit model as the discrete component to estimate 
evacuation destination and an accelerated hazard model as the continuous 
component to estimate the departure time. The results indicate that socio-
economic attributes of evacuees, disaster characteristics, built-environment 
and land use factors, and issuance of evacuation order by government are key 
determinants of the two decisions. The significance of the estimated copula 
parameters confirms the existence of unobserved shared effects between the 
two evacuation decisions, which entails the use of joint modeling scheme. 

Introduction 
A disaster is a natural or artificially-caused event or situation that disrupts 
normal activities and can lead to severe infrastructure damage and loss of life. It 
can be in the form of natural events such as tornados, hurricanes, floods, forest 
fires, and earthquakes or artificially-caused events such as nuclear seepages 
and terrorist attacks. These disasters have been increasing in frequency in 
recent years, resulting in sizable economic losses and casualties. For instance, 
315 disastrous events occurred around the world in 2016, resulting in over 
$210 billion in economic loss, compared to the 16-year average of 271 events 
with annual average of $174 billion in economic loss (Benfield 2016). Due to 
the increased risk of these incidents over the past few decades, it is vital for 
the governments to develop effective evacuation strategies to alleviate the 
damage and fatality caused by these tragedies. Hence, a growing number of 
studies have focused on the emergency evacuation process to predict public 
responses and optimize the evacuation procedure from the affected areas. 
This led to development of several methodological approaches, ranging from 
statistical and optimization modeling to simulation-based methods to predict 
and simulate individual evacuation behavior. 

8  Authored by Nima Golshani, Ramin Shabanpur, Ehsan Rahimi, and Kouros Mohammadian,  
Joshua Auld, Hubert Ley, University of Chicago, Argonne
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In general, disasters can be categorized into two groups considering their 
predictability. The first group comprises predictable disasters such as 
hurricanes in which treatments and possible evacuation procedures can be 
planned from the moment they are predicted. In the case of these events, 
people in the affected areas are informed in advance by the officials and, if 
required, are guided to safe places. These events are mostly referred to as 
advance-notice emergency events in the literature. The second group consists 
of disasters that are not predictable, such as terrorist attacks, chemical spills, or 
earthquakes, where notifying the public prior to its occurrence is not feasible. 
In these situations, referred to as no-notice emergency events, it is generally 
considered that evacuation procedures start immediately after the occurrence 
of the event. Thus, pre-disaster planning is of great importance for these events. 

Individual evacuation behavior during advance-notice emergency events has 
been extensively addressed in the literature (see, for example, Drabek and 
Boggs, 1968; Baker, 1991; Drabek, 1999; Hasan et al., 2013; Sadri et al., 2013). 
However, only a few studies have attempted to address this issue in case of 
no-notice emergencies mainly due to the scarcity of data. This study aims 
to analyze evacuee behavior in the context of no-notice emergency events 
using an internet-based stated preference survey conducted in the Chicago 
metropolitan area. In the survey, respondents were faced with multiple 
emergency scenarios and asked to state various aspects of their evacuation 
decision including the evacuation destination and departure time. 

These two dimensions of evacuation behavior are of great importance 
because they directly affect the spatial and temporal distributions of traffic 
in the transportation network. Indeed, exploration of these attributes can 
specifically lead to preventing occurrence of gridlocks in the network and 
ultimately reduce economic damage and loss of life. Considering the behavioral 
aspects of evacuee decision behavior toward these parameters is imperative 
to identify the most influential factors in their evacuation planning process. 
From the methodological perspective, these two attributes have traditionally 
been modeled independently via a variety of modeling approaches. However, 
these decisions are closely intertwined due to the shared factors affecting 
them and/or the causal effects they have on each other. Hence, it is necessary 
to investigate these two decisions in a joint structure to be able to capture the 
unrestricted correlation between their unobserved influencing factors. 

This study contributes to the emergency evacuation literature by presenting 
a discrete continuous joint structure to explore the relationship between 
decisions on evacuation destination choice and departure time choice. To 
achieve that goal, we propose a copula-based joint model that comprises a 
multinomial logit model as the discrete component to estimate destination 
choice and an accelerated hazard model as the continuous component to 
estimate departure time decision. The main motivation to adopt the copula 
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approach is that it links the stochastic error terms without imposing restrictive 
distribution assumptions on the dependency structures of the discrete and 
continuous components (Bhat and Eluru 2009). 

Literature Review 
This section reviews previous studies related to evacuation departure 
time and destination choices and highlights the need for capturing the 
interdependencies and underlying correlations between them. A substantial 
body of the evacuation-related literature has focused on evacuee behavior in 
terms of evacuation participation (see, for example, Dash and Gladwin, 2007; Fu 
and Wilmot, 2004; Hasan et al., 2011; Murray-Tuite et al., 2012) and evacuation 
route choice behavior (see, for example, Carnegie and Deka, 2010; Robinson 
and Khattak, 2010; Sadri et al., 2014; Wu et al., 2012). However, relatively little 
attention has been given to estimating evacuee departure time and destination 
choice behavior. 

As one of the earliest studies on evacuation departure time, Sorensen (1991) 
used ordinary least square regression to uncover the relationship between 
evacuee departure time and other explanatory variables. He found that the time 
of warning receipt and the amount of time that the evacuee needs to prepare 
to leave (mobilization time) are the most significant factors in departure time 
decision. By using data collected in southwestern Louisiana after Hurricane 
Andrew, Fu and Wilmot (2004) developed a sequential binary logit model to 
estimate the probability that people evacuate at each time period before 
hurricane landfall. In a later study, Fu and Wilmot (2006) estimated and 
compared two survival analysis models, the Cox proportional model and the 
piecewise exponential model. Similar to their previous study, they considered 
discrete time intervals with a coarse aggregation of six-hour time durations and 
derived the evacuation probability within each time interval as a function of the 
household’s socioeconomic characteristics, the characteristics of the hurricane, 
and policy decisions made by authorities. 

Using the same dataset, Dixit et al. (2012) presented an evacuation departure 
time choice model while controlling for risk attitudes. They found that factors 
such as length of time spent in a region, time of day, and whether a mandatory 
evacuation order was issued have significant effects on the risk attitudes. 
In another study, Dixit et al. (2008) showed how the psychological impact 
of a previous hurricane can affect the evacuation decisions in a subsequent 
hurricane. They used the data from a survey conducted with the evacuees of 
Hurricane Frances, which made landfall three weeks after Hurricane Charley in 
2005. In this study, the effects of the preceding hurricane were accounted for by 
modeling departure times simultaneously with an ordinal variable representing 
evacuation participation levels during Hurricane Charley. 
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Arguing that the risk responses are heterogeneous across the hurricane-
affected individuals, Sadri et al. (2013) proposed a random parameter ordered 
probit model to capture underlying unobserved characteristics in the timing 
behavior of the evacuees. They estimated the evacuation mobilization time 
(time elapsed from the evacuation decision to the actual evacuation) using 
data from Hurricane Ivan on households from Alabama, Louisiana, Florida, 
and Mississippi. They reported that the variables related to household 
location, evacuation characteristics, and socio-economic characteristics are 
key determinants of the mobilization time. They also found that the effects of 
previous hurricane experience, source and time of evacuation notice received, 
work constraints, race, and income vary across the observations. 

Using the same dataset, Hasan et al. (2013) proposed a continuous time 
approach for modeling the evacuation timing decision to overcome the 
limitations associated with the coarse discrete time intervals considered in 
the prior studies. They proposed a random-parameter hazard-based model 
to understand household evacuation timing behavior. It was found that the 
hazard-based model can reasonably estimate the end of the duration from the 
moment of receiving a hurricane warning to the moment of actual evacuation. 
They could also capture the heterogeneous risk responses in the context of 
departure time decision by incorporating the random parameters approach in 
their model. As they reported, factors such as household geographic location, 
type of shelter, location and time to reach the destination in normal time, time 
between decision and actual evacuation, whether to live in a mobile house, 
education status, income, type of evacuation notice (mandatory or optional) 
received have significant effect on departure time decision. 

From a different perspective, Ng et al. (2015) investigated the departure time 
choice behavior in hurricane evacuations of people with special needs, referred 
to as the medically fragile population in their study. Using data from a large-
scale phone survey conducted after Hurricane Irene, they applied the ordinal 
logistic regression model to uncover the differences between evacuation 
behavior of the medically fragile and the non-medically fragile population 
groups. They identified key variables that influence the evacuation departure 
time of these two population groups and found that fundamental differences 
exist between their evacuation behaviors. 

Moving to evacuation destination choice models, earlier studies showed that 
if people decide to leave the affected area, they mostly go to public facilities or 
friend and relative homes. These studies have used a variety of methodological 
approaches that generally focus on aggregated (or zone-based) data. These 
methods range from trip distribution gravity models (Wilmot, Modali, and 
Chen 2006) to zone-based discrete choice models (Cheng, Wilmot, and Baker 
2008). In this line of research, Charnkol et al. (2007) developed emergency 
trip destination model using the binary logistic regression and neural 
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network approaches. They estimated the probability of selecting evacuation 
destinations between public and private shelters. Two separate sets of models 
for permanent residents and transients are presented. They found that variables 
such as safety and security, medical support, comfort and convenience, 
communication attribute, and availability of food and beverage attribute 
significantly affect the shelter choice behavior of evacuees. 

Cheng et al. (2008) presented two separate zonal-level multinomial logit models 
for friends/ relatives and hotel/motel choices. They aggregated destination 
zones based on the risk due to hurricane and natural geographic features 
and considered 28 destination alternatives in their study. They found that 
destination choice is affected by the trip distance and the attributes of the 
destination zone including risk, white population, total population, presence 
of a major metropolitan area, number of hotels, and presence of an interstate 
highway. Later, Mesa-Arango et al. (2013) developed a household-level nested 
logit model to identify the variables influencing destination type choice among 
four common alternatives—houses of friends and relatives, hotels, public 
shelters and churches, and other. They used data from Hurricane Ivan 2004 
to calibrate the model. More recently, Parady and Hato (2016) estimated a 
spatially correlated logit model of evacuation destination choice and proposed 
an alternative allocation parameter to account for spatial correlation in the 
particular context of tsunami evacuation. They found that factors such as 
origin-destination (OD) distance, OD altitude difference, number of buildings, 
and number of officially designated shelters are statistically associated with 
evacuation destination choice. Their results suggest the existence of a high 
degree of correlation among unobserved attributes of zones which was suitably 
captured by the proposed allocation parameter. A summary of the reviewed 
studies is presented in Table 8-1. 
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Table 8-1  Summary of Studies on Evacuation Departure Time and Destination Choice 

Author Spatial Context & Data Model Choice Set Description

Sorensen, 1991 
Hazardous materials incident 
(Mar 1987): 578 respondents 
in Atlanta 

Ordinary least square 
regression Continuous time 

Fu and 
Wilmot, 
2004 

Hurricane Andrew (Aug 1992): 
156 households in SW LA Sequential logit model 

Discrete time intervals: 12:00 am-
6:00 am, 6:00 am-12:00 pm, 12:00 
pm-6:00 pm, and 6:00 pm-12:00 
am (for 3 consecutive days) 

Fu and 
Wilmot, 
2006 

Hurricane Andrew (Aug 1992): 
156 households in SW LA 

Cox proportional hazard 
& piecewise exponential 
model 

Discrete time intervals: 12:00 am-
6:00 am, 6:00 am-12:00 pm, 12:00 
pm-6:00 pm, and 6:00 pm-12:00 
am (for 3 consecutive days) 

Dixit et al., 
2008 Hurricane Frances (Aug 2004): 

454 respondents in FL Ordered probit model 
Discrete time intervals: 1 hr or 
less, 2-3 hr, 4-6 hr, 7-24 hr, and 
more than 24 hr 

Dixit et al., 
2012 Hurricane Andrew (Aug 1992): 

157 households in SW LA Regression model 
Discrete time intervals: 12:00 am-6 
am, 6 am-12 pm to noon, noon to 
6 p.m., 6 p.m. to 12 am 

Sadri et al., 
2013 

Hurricane Ivan (Sep 2004): 
457 randomly selected house-
holds in FL, AL MS, LA  

Random parameters  
ordered probit model 

Discrete time intervals: 1 hr or 
less, 2-3 hr, 4-6 hr, 7-12 hr, 12-24 
hr, and more than 24 hr 

Hasan et al., 2013 Hurricane Ivan (Sep 2004):  
3200 households in FL, AL, MS

Random-
parameter hazard-based 
model Continuous time

Ng et al., 
2015 Hurricane Irene (Aug 2011): 

539 households in VA and NC Ordered logit model
Discrete time intervals: after land-
fall, up to 24 hr prior to landfall, 
24-48 hr prior to landfall, and
more than 48 hr prior to landfall

Charnkol et al., 2007 

Indian Ocean earthquake & 
tsunami (Dec 2004): 
633 individuals in 
Phuket, Thailand 

Binary logistic regression 
model & Neural Network 
model

Public shelter vs. private shelter 
(two separate models for  
permanent residents and  
transients)

Cheng et al., 2008 
Hurricane Floyd (1999): 
1040 households in SC Multinomial logit model

28 TAZ options (two separate 
models for friends/relatives & 
hotel/motel)

Mesa-
Arango et al., 
2013 

Hurricane Ivan (Sep 2004): 
1,419 households in FL, AL, 
MS, LA Nested logit

4 options: Public shelters and 
churches, hotels, friends and 
relatives, other 

Arango et al., Nested logit 
4 options: Public shelters 
and churches, hotels, 
friends and 

Parady and 
Hato, 2016 

Great East Japan tsunami 
(Mar 2011): 10,603 individuals, 
Kesennuma city, Japan 

Spatially correlated logit 
model

Study area tessellated into a  
1-km-sq zone mesh, used as spa-
tial unit of analysis and 
constitutes universal choice set
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In conclusion, while individual evacuation behavior during advance-notice 
emergency events has been extensively studied in the literature, only a few studies 
have attempted to address this matter in the case of no-notice disasters. Scarcity 
of available data sources is the main reason of this gap in the evacuation literature. 
Furthermore, although the evacuation dimensions of destination and departure 
time choices are closely intertwined, no study has yet investigated their correlated 
decisions in a joint structure. This study aimed to contribute to the literature 
by estimating a joint discrete-continuous model of evacuation destination and 
departure time choices in the context of no-notice emergency events. 

Data 
The data used in this study were extracted from the internet-based stated 
preference survey for no-notice emergency evacuations (Auld et al. 2012), 
conducted by the Argonne National Laboratory in 2012. The data were collected 
through an online platform with access to Google Maps API and consisted of 
two parts. The first part focused on collecting detailed demographic, location, 
and vehicle use information of the 500 survey participants and their household 
members for a typical weekday. 

The sample represented participants who resided in Chicago metropolitan 
area and were composed of 45% men and 55% women. Moreover, 7% of the 
participants held high school degree or less, 19% passed some college credits, 
29% held a college degree, and 45% held graduate or professional degrees. The 
average household size was 2.66 and the average number of adults and children 
in households was 2.09 and 0.57, respectively. Finally, 30% of the households 
had annual income below $50,000, 40% between $50,000 and $100,000, and 
the remaining 30% more than $100,000 per year. A full description of the survey, 
descriptive statistics, and validation of the data can be found in Auld et al. (2012). 

In the second part of the survey, participants were presented with two random 
emergency scenarios. The designed scenarios varied in terms of timing, 
severity, risk, location, radius of the event, and government recommendation. 
Participants were then asked about their evacuation decision and potential 
trips after the occurrence of the emergency event. The collected trip 
information included number of stops, the reason for each stop, stop locations 
(e.g., pick up children from school), and the type and location of final evacuation 
destinations. Destination types considered were evacuation shelter, hotel/
motel, stay/return home, and stay with family and friends, hereafter referred 
to as shelter, hotel, home, and family, respectively. Figure 8-1 presents the 
distribution of destination choices in the dataset, which indicates that 53.54% of 
the participants would travel to shelters whereas only 4.17% would select hotel 
as their destination. Figure 8-1 also shows that 30.42% of participants would 
return home and 11.88% preferred to stay with their family. 
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Figure 8-1  Destination choice distribution 

To account for land-use and built environment characteristics, related variables 
such as population and housing density were extracted at the census tract 
level for Chicago metropolitan area and were added to the dataset. Further, 
we formed participants’ stated tours (as illustrated in Figure 8-2 right) and 
extracted the corresponding tour- and trip-related variables such as total 
number of trips, trip travel time and distance, and total tour travel time and 
distance from Google Maps API. Figure 8-2 depicts the formed tours with red 
dots showing the final evacuation destinations.

Figure 8-2  Evacuation destination type (left) and tour formation (right) 
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Figure 8-3 presents the distribution of total distance of evacuation tours for 
each type of destination. The figure reveals that participants who preferred to 
stay with family/friends were willing to commute longer distances compared to 
those who selected other destination alternatives.

As previously highlighted, the second component of the proposed joint structure 
was evacuation departure time. Figure 8-4 presents the distribution of departure 
times in the dataset, which reveals that 48% of participants started their tours 
within the first 30 minutes after the emergency event occurrence; that is expected 
in the case of no-notice evacuation. Further, more than 90% of the participants 
stated that they would evacuate within 180 minutes after the event occurrence.

Figure 8-3  Total distances for each destination type

Figure 8-4  Evacuation departure time distribution
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Moreover, to investigate the dependence of departure time and destination 
choice decisions, Figure 8-5 presents the distribution of evacuation departure 
time conditioned on the destination. Different patterns of departure time 
distributions revealed that this variable highly depends on the selected 
destination type, which reflects the need for a modeling approach that can 
account for the interdependence between the two variables.

Figure 8-5  Distribution of departure times across destination choices
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Variable Description Mean St. 
Dev.

Gender_male 1: if participant is male; 0: otherwise (o/w) 0.45 0.50
Degree_low 1: if participant has high school degree or less; 0: o/w 0.07 0.25
Degree_graduate 1: if participant has graduate or professional degree; 0: o/w 0.45 0.50
Disability 1: if participant has a disability; 0: o/w 0.07 0.25
Housing_townhouse 1: if participant lives in a townhouse; 0: o/w 0.06 0.23
Housing_apartment 1: if participant lives in an apartment; 0: o/w 0.12 0.33
Housing_condo 1: if participant lives in a condo; 0: o/w 0.04 0.20
Job_retired 1: if participant is retired; 0: o/w 0.13 0.34
Job_homemaker 1: if participant is a homemaker; 0: o/w 0.04 0.19
HH_size Number of adults in household 2.65 1.48
Government_evacuate 1: if government has issued an evacuation order; 0: o/w 0.65 0.48
Risk_high 1: if risk of event is high; 0: o/w 0.33 0.47
Risk_low 1: if risk of event is low; 0: o/w 0.31 0.47
PopulationDensity Population density of census tract (in thousand people) 4.59 6.09

PopulationDensity_log Log of population density of census tract (in thousand 
people) 0.84 1.19

PopulationDensity _10 1: if population density of participants’ location during 
event greater than 10,000; 0: o/w 0.11 0.32

PopulationDensity _3 1: if population density of participants’ location during 
event less than 3,000; 0: o/w 0.57 0.50

Distance Total distance of tour (miles) 133.07 267.80
Distance_log Log of total distance of tour 4.07 1.27
Distance_10 1: total distance of tour is greater than 10 mi; 0: o/w 0.95 0.22
Distance_30 1: total distance of tour is greater than 30 mi; 0: o/w 0.74 0.44
Distance_50 1: total distance of tour is greater than 50 mi; 0: o/w 0.54 0.50
TT_40 1: if the total travel time of tour is greater than 40 min; 0: o/w 0.58 0.49
Stops_high 1: if more than 1 stop in participants’ tour; 0: o/w 0.23 0.42
Stop_pickup 1: if participant’s first trip is to pick up child; 0: o/w 0.05 0.22
Mode_family 1: if participant’s first trip is to meet up with family; 0: o/w 0.97 0.17

Figure 8-2  Summary Statistics of Key Variables 
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Modeling Approach 
As noted, this study aimed to jointly model the evacuation destination and 
departure time choices in case of no-notice emergency events. To achieve 
this goal, we adopted the copula-based modeling approach which is able 
to simultaneously estimate these interrelated decisions and capture the 
underlying correlation between them. In the proposed joint structure, 
destination choice is estimated using a multinomial logit model and departure 
time is estimated using accelerated hazard formulation. 

As the first component, evacuation destination choice is estimated using a 
multinomial logit model. The utility function of the choices can be written as: 

Udi = βdXdi + εdi (1)

where 𝑈𝑑𝑖 is the person-specific utility of destination 𝑑 for individual 𝑖, 𝑋𝑑𝑖 is the 
set of explanatory variables, 𝛽𝑑 corresponds to the estimable parameters, and 
𝑑𝑖 is the random error term of the utility corresponding to unobserved factors, 
which is assumed to have standard type I extreme value distribution.

As the second component of this joint structure, continuous departure time 
can be suitably modeled using hazard duration approach. Hazard models focus 
on the elapsed time until occurrence of an event, which in this study would 
be equal to the time until one evacuates. In fact, hazard models estimate the 
conditional probability of event occurrence (i.e., evacuation action) between 𝑡 
and 𝑡 +  𝑑𝑡 given that it has not happened up to 𝑡. This conditional probability 
can be formulated as follows:

where, 𝜆(𝑡) is the hazard rate, 𝑓(𝑡) is the probability density function of the 
elapsed time, and 𝐹(𝑡) is the corresponding cumulative density function that 
represents the probability of event occurrence until 𝑡. From the available 
hazard models, accelerated hazard formulation allows the covariates to 
directly influence the length of the elapsed time until the event occurrence. 
Therefore, the effects of the estimated parameters on the elapsed time can be 
easily interpreted. In addition, this model assumes that the hazard rate can be 
accelerated/decelerated over time in direct response to changes in covariates. 
The accelerated time hazard model can be expressed as:

λ(t|Z) = λ0[t. 𝑒𝑥𝑝(αZ)]𝑒𝑥𝑝(αZ)              (3)

where 𝑍 is the set of explanatory variables affecting elapsed time, 𝛼 is the 
vector of estimable parameters, and 𝜆0 represents the baseline hazard function. 
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As Kiefer (1988) stated, assuming that the covariates exponentially influence 
the duration, this formulation is mathematically equivalent to the log-linear 
regression model as (for each individual 𝑖 and destination 𝑑):

𝑙𝑛(tdi) = αdZdi + νdi (4)

where ln(𝑡𝑑𝑖) represents the natural logarithm of elapsed time for person 𝑖 and 
destination choice 𝑑, only if choice 𝑑 is selected as the evacuation destination, 
𝛼 is the vector of estimable parameters, 𝑍 is the vector of explanatory variables, 
and 𝜈 is the error term corresponding to unobserved factors. 

The linkage between destination choice and evacuation timing decisions 
depends on the type and the extent of the dependency between the stochastic 
terms 𝜈𝑑𝑖 and 𝑑𝑖. To capture the dependency between these two decisions, 
this study applies the copula approach, which presents the joint probability 
distribution of random variables with pre-defined marginal distributions as 
follows (Sklar 1973): 

Fνdi,εdi(X1, X2) = Cθ (u1 = Fνdi(X1), u2 = Fεdi(X2))           (5)

where, 𝐹𝜈𝑑𝑖, 𝑑𝑖 (., . ) is the multivariate joint distribution, 𝐶𝜃(. , . ) is the copula 
function with 𝜃 as its corresponding copula parameter, 𝐹𝜈𝑑𝑖 (. ) and 𝐹 𝑑𝑖 (. ) are 
marginal distributions. 

Several copula functions have been formulated in the literature including FGM 
copula, Gaussian copula, and the Archimedean class of copulas (i.e., Clayton, 
Gumbel, Frank, and Joe copulas). The Archimedean class of copula has been 
widely used in the literature because of their closed-form functions and their 
ability to cover a wide range of dependency structures (Bhat and Eluru 2009). 
This study adopted the Frank copula (Frank 1979) to jointly estimate the 
evacuation destination and departure time choices because it is the only copula 
function that allows for both positive and negative dependence and has no 
limitations in parametrizing the complete range of dependence between the 
two dependent variables (Bhat and Eluru 2009). The copula function for Frank 
model with 𝑢1 and 𝑢2 as marginal distributions of the stochastic error terms and 
𝜃 as the copula parameter is as follows (Bhat and Eluru 2009): 
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Using the equations (3)-(5) for estimating the joint distribution, the likelihood 
function of the joint model can be formulated as (Spissu et al. 2009):

where, 𝑅𝑑𝑖 is the binary variable indicating whether destination 𝑑 is selected by 
individual 𝑖 , 𝑓𝜈𝑑𝑖 is

Model Estimation Results 
Table 8-3 outlines the estimation results of the joint discrete-continuous 
destination and departure time model. A full set of possible variables and 
variable interactions was tested, and the statistically significant variables 
are presented in this table. The results indicate that a wide range of socio-
demographic and land-use variables, event characteristics, and travel-related 
parameters affects evacuees’ decisions during emergency events. The following 
discussion is organized to explore the role of these variables in the evacuation 
decision process. 
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Variable
Shelter Home Home Family

Param. t-stat Param. t-stat Param. t-stat Param. t-stat
Destination Choice: Constant 4.44
   Disability – – – – 1.22** 2.02 – –
   Degree_graduate 0.89** 2.48 – – -0.70* -1.80 – –
   Housing_townHouse – – – – 6.38*** 7.62 – –
   Housing_apartment 5.33*** 9.74 – – – – – –
   Housing_condo – – 4.82*** 8.94 – – – –
   Job_retired – – – – -2.17** -2.34 1.63*** 3.84
   Government_evacuate 0.61** 2.15 – – -1.39*** -3.19 – –
   Risk_high 1.22** 2.35 0.93* 1.72 – – – –
   PopulationDensity_log 0.38*** 2.63 – – – – 0.21*** 4.19
   PopulationDensity_10 – – -4.79*** -8.56 – – – –
   Distance_50 – – – – – – 1.71*** 5.35
   Distance_log -0.27** -1.99 – – -0.56*** -3.18 – –
   Mode family – – – – – – 2.17** 2.08
Copula parameter: 0 -1.86*** -3.80 .6.35** -2.07 -6.14** -2.40 04.97*** -2.98
  Timing 
  Constant 4.38** 2.09 3.85* 1.82 5.18*** 3.65 3.71*** 2.79
  Disability 2.71** 2.30 – – – – 4.43*** 6.21
  Gender_male – – 1.99** 2.39 – – 2.52** 2.05
  Degree_low 2.55*** 5.19 – – – – – –
  Job_retired – – – – – – 4.33*** 4.42
  HH_size 0.73** 2.03 0.64*** 2.71 – – – –
  Government_evacuate -0.95** -2.26 -0.53* -1.88 – – – –
   Risk_low – – – – 1.49*** 2.93 1.65* 1.84
   Distance_30 -1.97** -2.39 -1.28* -1.89 – – 02.42* -1.92
   TT_40 – – – -2.61*** 0-2.64 – –
   Stops_high -2.78*** -3.32 – – – – – –
   Stop_pickup -4.01*** -3.59 -3.45*** -2.73 – – – –
Scale parameter: σ 5.34*** 20.87 4.28** 2.25 2.71*** 4.91 5.58*** 16.91
Kendall’s τ -0.20 -0.53 -0.52 -0.46
Restricted LL -1804.87

LL at convergence -1485.67

*Significant at 90%    **Significant at 95%    ***Significant at 99%

Table 8-3  Estimation Results of Joint Destination and Departure Time Choice Model
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The results indicate that disability significantly increases the probability of 
staying at/returning home during emergency events possibly because of 
evacuee’s mobility restrictions. Furthermore, retired participants tend to 
stay with their family whereas they are less likely to choose home, which is 
not surprising because older adults typically rely on their family members for 
emergency evacuation. The results also suggest that housing type plays an 
important role in evacuation destination choice. That is participants who live 
in houses tend to return home or shelter in their place whereas those who live 
in apartment and condominium are more likely to opt for shelters or hotels 
as their destination. Positive sign of population density in utility functions 
of shelter and family indicates that these destinations in areas with higher 
population densities (e.g., metropolitan areas) are more attractive to evacuees. 
Similar findings can be found in Cheng et al. (2008) for selecting to stay with 
family as evacuation destination. 

Moreover, variables representing the characteristics of the emergency event 
significantly affect the evacuation destination choice. Per results, participants 
are less likely to return home if an evacuation order has been issued by the 
government but they are more willing to opt for shelters. On the same note, 
participants who are experiencing events associated with high risks tend to 
take refuge in hotels and shelters where medical assistance is usually provided. 
This finding is in line with previous studies suggesting that public perceptions 
towards shelters are associated with the availability of food, water, and basic 
medical facilities (Sadri, Ukkusuri, and Murray-Tuite 2013; Smitherman and 
Soloway-Simon 2002). 

Finally, it was found that distance significantly affects the evacuation 
destination choice. The results indicate that long distance evacuation tours 
(greater than 50 miles) are more likely to associate with selecting family as 
evacuation destination. Further, increasing the distance leads to reducing the 
probability of selecting home and shelters. Similar results are found in Mesa-
Arango et al. (2013) in the context of hurricane evacuation. 

Turning to the departure time decision, the results show that participants with 
high school degree or less tend to evacuate in later times which in line with 
findings of previous studies on evacuation timing (see, for example, Hasan et 
al. 2013). Positive signs of the variable representing participants with disability 
suggests that they are associated with later evacuation departure times. This 
can be because of their need for more preparation time, mobility restrictions, 
and reliance on others to evacuate. We also found that the higher the household 
size of the evacuees, the longer it takes for them to evacuate. 

As expected, participants who have received the government evacuation order 
tend to depart sooner to take refuge in shelters or hotels compared to those 
who have received a nonmandatory seek shelter order. These findings are 
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similar to those from Hasan et al. (2013) in the context of hurricane evacuation 
where they stated that this variable may capture the severity of the event. On 
the same note, low risk of an emergency event leads to later departure times for 
trips destined to home or family. 

It was also found that trip- and tour-related variables significantly influence the 
timing of evacuation. According to Table 8-3, participants tend to depart sooner 
if their final destinations are associated with travel distances longer than 30 
miles and travel times greater than 40 minutes. The results also suggest that 
increasing the number of stops in the evacuation tour advances the departure 
time. Trip purpose is also confirmed to be influential. As expected, respondents 
who stated that they would first pick up their child and then evacuate to a 
shelter or a hotel tend to depart very soon. Participants who prefer to wait to 
be picked up by their family members tend to evacuate in later times. These 
variables are of great importance in the case of no-notice emergency events 
since household members are possibly dispersed throughout the network in 
daytime. The diversity of household members may result in additional trips 
(e.g., picking up family members) in the network, which can conflict with 
the evacuation procedure by adding extra trips in either the direction or the 
opposite direction of the expected routes (Liu, Murray-Tuite, and Schweitzer 
2012; Zimmerman, Brodesky, and Karp 2007). Failing to consider these 
additional trips may result in underestimation of travel time that can ultimately 
lead to higher number of fatalities during emergencies. 

Moving to the parameters of the joint modeling structure, the significance 
of the copula parameters confirms the existence of unobserved common 
factors in destination and departure time choices which, if ignored, can lead to 
inconsistent estimates. Furthermore, the significance of the scale parameters, 
which represent the variance of the error terms in continuous departure times, 
indicates the considerable effect of unobserved factors on departure time for 
each destination. To better show the dependency structure of destination and 
departure time choices, the Kendall’s 𝜏 measure of dependency was calculated 
and is presented in Table 8-3. This measure of dependency (𝜏) transforms the 
copula parameter (𝜃) into a number between −1 and 1 (Bhat and Eluru 2009) 
and can be derived as follows: 

The negative sign of the resulted Kendall’s 𝜏 indicates that the unobserved 
factors that increase the propensity to choose a destination tend to increase 
the departure time. Furthermore, the magnitude of the estimated Kendall’s 𝜏 
for shelter is less than those for other destinations, which demonstrates that 
evacuees who decide to take refuge in a shelter, are more likely to start their 
trips sooner compared to other destinations. 
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Conclusions 
Although behavioral analysis of people’s response to advance-notice emergency 
events has been extensively addressed in the literature, only a few studies have 
focused on no-notice emergencies. Furthermore, modeling joint decisions in 
the context of these events to capture their interrelated decision mechanism 
is another potential gap in the literature. To tackle these issues, we presented 
a joint discrete-continuous model of destination and departure time choices 
during no-notice emergency events using an internet-based stated preference 
survey conducted in Chicago. These two decisions are of great importance 
because they directly impact the spatial and temporal distribution of traffic 
in the network in case of emergency events. Understanding evacuee behavior 
towards these decisions can lead to development of effective policies to manage 
the evacuation-induced traffic in case of these events and ultimately reduce 
economic damage and loss of life. 

The proposed joint model consists of a multinomial logit model to estimate 
the destination choice and an accelerated hazard formulation to estimate the 
departure time of the evacuation. The results confirmed that a wide range of 
demographic (e.g., disability, education level, housing type, and employment 
status), land-use (e.g., population density), characteristics of the event (e.g., 
type of the government order and event’s severity and risk) and travel-related 
variables (e.g., distance, travel time, number of intermediate stops, trip 
purpose) are influential in evacuee decision behavior during no-notice disasters. 

The significance of copula and scale parameters in the proposed joint structure 
confirms that there exist unobserved factors between the two attributes 
which, if ignored, can lead to inconsistent estimates. Furthermore, comparison 
of estimated Kendall’s τ measures indicates that the participants who select 
shelter as their final destination tend to start their trip sooner than others. 

This study has several potentials for future research directions. First, the model 
can be expanded to account for unobserved heterogeneity in the dataset 
by incorporating random parameters or latent class modeling approaches. 
Also, the modeling framework can be expanded by developing a joint model 
that considers the correlation of other evacuation attributes such as mode 
choice with these two dimensions. Furthermore, applying other joint modeling 
techniques and comparing their results with the employed copula approach 
would be informative about their performance. Finally, all models can be used 
in a large-scale microsimulation model to develop a policy-sensitive framework 
that captures the dynamics in evacuees’ responses with respect to traffic 
conditions of the network. 
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All-Hazard Emergency Events  
for Transit Response Case Studies9  
The U.S. Census Bureau confirmed that the estimated population of Chicago in 
2016 was 2,704,958, ranked as the third largest city in the U.S. just behind New York 
(8,537,673) and Los Angeles (3,976,322). The Chicago metropolitan area, also named 
as Chicagoland, refer to an area that includes the city of Chicago and surrounding 
suburbs; the population is around 9.7 million. The Chicago Metropolitan Statistical 
Area (MSA) was originally designated by the U.S. Census Bureau in 1950, which 
covers Cook, DuPage, Kane, Lake and Will counties in Illinois and Lake County in 
Indiana. Later, surrounding counties that met Census criteria were then added to 
the MSA; now, the Chicago MSA is defined by the U.S. Office of Management and 
Budget (OMB) as the Chicago-Naperville-Elgin, IL-IN-WI Metropolitan Statistical Area 
and is the third largest MSA by population in the country. 

Figure 9-2 shows the population distribution and guides for evacuations 
in emergency situations. Specifically, Figure 9-2 shows the southern and 
northwestern sides of Chicago with more residents, and several downtown 
Chicago areas with relatively high population concentration. All hazard events 
within these areas may cause severe consequences. Figures 9-3 through 9-7 
display the distribution of “special needs” populations, including those with 
poor English proficiency, low median retirement income, residents age 19 and 
under, and residents age 65 and older. Evacuation in those areas may attract 
more attention. Extending to the Chicago metropolitan area, people living in the 
northern suburban areas along Lake Shore are relative affluent; comparatively, 
residents on the southern side are more likely to have lower incomes. According 

Figure 9-1  Map of Chicago metropolitan area  

9 Authored by Zongzhi Li, Yongdoo Lee, Yunseung Noh, Lu Wang, and Ji Zhang, ITT.
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to the 2000 U.S. Census data, within Chicagoland, the poverty rate of counties 
from the highest to the lowest are Cook (14.5%), Kane (7.4%), Lake (6.9%), Will 
(6.7%), DuPage (5.9%), and McHenry (3.7%).

Figure 9-2  Residents across Chicago 
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Figure 9-3  Households where English only spoken language  
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Figure 9-4  Households where English poorly spoken 
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Figure 9-5  Aggregate retiree income
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Figure 9-6  Residents age 18 and under 
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Figure 9-7  Residents age 65 and older  
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Case 1: PACE Bus Route Emergency 
from Bomb Threats 
Two common forms of terrorist bomb threats for which transit systems could 
play an essential role for evacuation are on-board and out-board bomb threats. 
In the case of an on-board bomb threat, one or more terrorists might board one 
or multiple PACE buses and threaten to detonate bombs. The bomb explosions 
might be triggered simultaneously with synchronized threats or progressively 
with leveraged threats. On-board terrorist activities normally are a direct 
danger to humans, with severity levels depending on the number of on-board 
passengers, which vary across time-of-day commuting. It is essential to prepare 
for a worst-case scenario, where a perpetrator attempts to cause maximum 
damage. Therefore, it was assumed that the peak hours during which PACE 
buses are serving the maximum number of riders are the potential target hours 
for terrorists, and emergency evacuation plans must be prepared accordingly 
for passengers on the attacked buses. As such, other buses around the affected 
area might be used to help with evacuation if needed, or they can make a detour 
to minimize damages of the terrorist attack. 

For out-board bomb threats, suburban recreational centers, shopping malls, or 
transit stations with dense population might be terrorist attack targets. Similar 
to an onboard threat, it could be an isolated threat or multiple threats to several 
locations simultaneously. Transit could play an essential role in helping in these 
emergency situations to evacuate victims and people in surrounding areas to 
mitigate damage consequences. Paratransit vehicles and smaller vans nearby 
might also be used to conduct evacuation in narrow spaces where large-sized 
PACE buses cannot access. 

The specific evacuation strategy will be different depending on which of these 
two emergency cases occurs; however, it follows the same process. As such, 
once the emergency case occurs, the impact factors and severity level need to 
be assessed first. The countermeasure library will then be searched to retrieve 
an evacuation strategy accordingly. In the case where the evacuation strategy 
retrieved from the simulated countermeasure library does not precisely match 
with the real case emergency, the operative decision support tool featured on 
the POLARIS EvacPlan tool will enable emergency responders/transit operators 
to modify certain variables and adjust for the countermeasure of the real case. 

It is also noted that special-needs populations require particular attention 
during evacuation. Populations without private vehicles or vulnerable people 
who cannot access private vehicles during the emergency, also known as the 
transportation disadvantaged population, should also be considered as a 
special-needs population in the evacuation plan.  
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Bomb Threat Activity 
Bomb threats/ scares are threats designed to detonate an explosive or 
incendiary device to cause property damage, injuries, or deaths. These 
physical damages are mostly caused by bomb fragmentations, heat, and blast 
waves. Threats can be made when an explosive or incendiary device actually 
exists, but sometimes they are only verbal or written without physical device. 
Nevertheless, every case should be taken seriously and reacted accordingly. 
Due to the severe consequences caused by bombs, it is stated by law that 
all bomb threats are assumed to be with bad intent, and even a false threat 
can incur a fine up to $5,000 and 5 years in prison. In several U.S. states, the 
punishment is even more strict. 

In general, bombs using for bomb threats are different variations of homemade 
bombs. Homemade bombs refers to improvised explosive devices (IEDs) that 
are constructed and deployed in ways other than in conventional military 
actions. Due to their static nature, IEDs are commonly deployed as roadside 
bombs. Another variation of IEDs is vehicle-borne improvised explosive devices 
(VBIEDs), so-called car bombs or truck bombs. VBIEDs are actually IEDs carried 
by any transportation vehicle. The sizes, shapes, and materials may vary among 
all kinds of bombs. 

Types of Bomb Threats 
A bomb threat can occur with or without a prior notification. Bomb threats 
with prior notification normally are used when a terrorist want to stir chaos 
beyond the affected range, draw attention from the media, or use the bombs as 
a leverage tool. These threats may be received via telephone, written message, 
electronic device, social media, email, or in person. On the other hand, if the 
terrorist intent is to disrupt social and business activities and cause as much 
damage as possible, the threats may not be delivered prior to the bomb 
detonating. 

Types of Bombs 
Most of the physical damage from bombs is caused by bomb fragmentation, 
heat, and blast waves. Therefore, explosive capacity is one of the most essential 
attributes when comparing various bomb types. The National Counterterrorism 
Center published a guideline for bomb threat stand-off distances, as shown in 
Table 9-1. It is noted that the table should be used only as reference information; 
in reality, radiation from an affected area caused by certain bomb types varies 
greatly depending on the construction of a building or obstacles at an outdoor 
location. 
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Table 9-1  Bomb Stand-off Distances 	

Threat Description
Explosives 

Capacity1 (TNT 
equivalent, lbs)

Building
Evacuation

Distance (ft)2

Outdoor
Evacuation

Distance (ft)3

Pipe bomb 5 70 850
Briefcase/ suitcase bomb 50 150 1,850
Compact sedan 500 320 1,500
Sedan 1,000 400 1,750
Passenger/ cargo van 4,000 600 2,750
Small moving van/ delivery truck 10,000 860 3,750
Moving van/ water truck 30,000 1,240 6,500
Semi-trailer 60,000 1,500 7,000

1  Based on maximum volume or weight of explosive (TNT equivalent) that could reasonably fit in a 
suitcase or vehicle. 

2  Governed by the ability of typical US commercial construction to resist severe damage or collapse 
following a blast. Performances can vary significantly, however, and buildings should be analyzed by 
qualified parties when possible. 

3  Governed by the greater of fragment throw distance or glass breakage/falling glass hazard distance. 
Note that pipe and briefcase bombs assume cased charges that throw fragments farther than vehicle 
bombs. 

PACE Bus Major Stops and Stations 
As a division of Chicago Regional Transportation Authority (RTA), PACE has 
served the commuting demands of suburban residents in Chicagoland since 
1983. Since then, PACE has served 40 million riders and continues to build an 
environment-friendly and ridership-convenient service system. All PACE buses 
are equipped with bike racks and are wheelchair accessible during all operation 
hours. The first fleet of diesel-electric hybrid buses was introduced in 2011, and 
the first fleet of compressed natural gas (CNG) buses was operational in 2015, 
which mainly serving the southern suburb residents. 

The operation range of PACE buses includes six Illinois counties—Cook, Lake, 
Will, Kane, McHenry, and DuPage—and some areas in Indiana. On average, the 
routes of PACE buses are much longer than CTA bus routes due to the broader 
range and longer distances between stations. PACE also coordinates various 
dial-a-ride services, usually sponsored by various municipalities and townships, 
and provides the nation’s largest paratransit service, with approximately 17,000 
daily trips on paratransit, dial-a-ride, and ADvAntage vanpools. Since 2014, CTA 
and PACE have provided Ventra as a unified payment system, whereas Metra 
keeps its fare system separate. 

Many of PACE's route terminals are located at CTA rail and bus terminals and 
Metra stations. During rush hours, PACE buses are allowed to use shoulder of 
expressways to shorten travel time. Figure 9-8 illustrates the stops of PACE 
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buses. Major stops are available on PACE’s official website 
(http://tmweb.PACEbus.com/TMWebWatch/MultiRoute). 

Concentrated Population Locations
Public Schools
Over the past 10 years, the number of terrorist activities targeting educational 
institutions has increased dramatically. Students and faculty studying and 
working in those institutions are facing unprecedented danger from terrorist 
activities. According to data published by the Global Terrorism Database, since 
2004, a sharp uptick in terror attacks has been recorded (Figure 9-9). Figure 9-10 
displays all public schools in Chicago for school year 2014/15, which could be 
potential targets of bomb threats to conduct the case study. 

Figure 9-8  PACE bus stops 

http://tmweb.PACEbus.com/TMWebWatch/MultiRoute
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Figure 9-9  Number of terrorist activities targeting educational institutions in world (1970–2020) 

Figure 9-10  Locations of educational units in Chicago Public School District 
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Figure 9-11  Major hospitals in Chicago 

Hospitals
Hospitals can be another target of bomb threats, and the consequences may be 
severe, as people being treated might have limited moving ability. A specially-
prepared evacuation plan is required to improve evacuation efficiency. Figure 
9-11 depicts major hospitals in Chicago. 

Shopping Malls
Shopping malls are another population-concentrated area that may suffer 
from bomb threats. The Bureau of Justice Assistance of the U.S. Department of 
Justice noted several types of suspicious activity prior to a terrorist activity: 

• Efforts to picture or video the shopping center
• Unusual inquiries about security procedures
• Tests of security responses
• Distribution of extremist literature and graffiti
• Unattended packages, bags, or vehicles
• Thefts of official vehicles, uniforms, identification, and access cards
• Attempts to access restricted areas
• Extremist attacks on other malls
• Other loitering, vandalism, or suspicious activities around the mall
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Figure 9-12  Major malls and plazas in Chicago 

On-board Bomb Scenario 

This scenario considers a PACE bus receiving a bomb threat on a platform during 
operation in transit facilities. 

Selection of Bomb Attack Location and Time 
In this case, the perpetrator tends to cause the maximum damage at a minimum 
cost. Therefore, in the development of this scenario, bus routes with relatively 
high ridership should be considered as potential targets. A PACE bus ridership 
summary revealed that route 270 along Milwaukee Avenue is the one of most 
ridership-concentrated routes, as shown in Figure 9-13. Route 270 serves as a 
CTA connector in the PACE bus service system, connecting one CTA train station 
(Jefferson Park of the Blue line), one Metra station (Jefferson Park of UP-NW), 
and 10 CTA bus routes (91, 85, 92, 88, 81, 56, 86, 85A, 68, 81W). Jefferson Park 
serves as the transit hub in the northwest suburban area. A large number of 
passengers use it to transfer among Metra and CTA train and bus services. 
Moreover, the CTA Blue line train connects O’Hare International Airport to 
the Chicago Central Business District (CBD), moving many flight passengers, 
especially those who fly domestically. Route 270 travels along Milwaukee 
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Avenue mostly in the village of Niles, which has been making extensive efforts 
to improve the function and aesthetics of the Milwaukee Avenue corridor from 
the perspective of a Transit-Oriented Development (TOD) Plan and Transit 
Improvement Plan since 2004. Considering the pivotal role that the PACE route 
270 plays from the regional transit system, it was selected to be the case study 
route. 

Generally, ridership on weekdays is always higher than on weekends. This is also 
reflected by ridership statistics. For example, in December 2018, the average 
weekday, Saturday, and Sunday or holiday ridership was 2,550, 1,601, and 1,003 
per day, respectively. Further, on a typical weekday, transit service during peak 
hours always carried the highest amount of trips. 

Therefore, a bomb incident occurring during the AM peak and/or PM peak was 
considered for this scenario. 

Figure 9-13  PACE bus Route 270 area map  

Scenario Development 
The on-board bomb scenario can be subcategorized into two cases, depending 
on whether a prior notification is received or not. Terrorists may send a threat 
to the agency and use the on-board bomb as leverage. Conservatively, the only 
usable information is that the bomb is equipped on at least one bus of route 
270, and any bus could be a possible target. Also, as the bomb can be detonated 
remotely and the time is unpredictable, the affected area can be anywhere 
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along the route within a certain radius. This makes the stand-off area a buffer 
zone along the route. From the perspective of the evacuation team, any human 
activity within this area should be evacuated as soon as possible to minimize 
damage. 

Affected Transportation Supplies 
A briefcase/ suitcase bomb was assumed to be used in this scenario, so a 2,000 
ft stand-off distance was used, which is slightly larger than 1,850 ft. Figure 9-14 
illustrates the stand-off area of PACE route 270. It covers 30 traffic analysis zones 
(TAZs) and will roughly affect 25,512 households with 63,975 residents. There are 
16 schools, 5 hospitals/nursing centers, and 11 shopping plazas within the range. 
It will affect 548 transit stops/stations including 90 CTA bus stops, 1 CTA train 
station, 2 Metra stations, and 455 PACE bus stops. Further geographic analysis 
reveals the detailed transit services affected, as shown in Table 9-2. In terms of 
surface transportation infrastructure, the range covers 141 major intersections 
and intersects 150 major roads, 57 minor roads, 18 ramps, and part of I-90/94. 

Figure 9-14  PACE bus Route 270 area map 
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As long as the threat is not eliminated or narrowed down to a smaller area, all 
people within the affected area should be evacuated to the nearest shelter with 
prior notice and instructions, including shelter locations and evacuation vehicle 
pickup locations. In this scenario, it is assumed that 10% of the residents need to 
be evacuated using the transit, and the rest will drive private vehicles. The pickup 
locations for each community will be located properly to minimize total evacuation 

Table 9-2  Transit Services Expected to be Affected 

Agency Route Number of  
Patterns Affected

Number of 
Trips Affected

CTA 56 4 157
CTA 68 4 95
CTA 81 2 250
CTA 81W 2 80
CTA 85 2 189
CTA 85A 2 78
CTA 86 5 112
CTA 88 4 91
CTA 91 3 156
CTA 92 3 155
CTA X98 1 1
CTA Blue line 9 370

Metra UP-NW 22 45
PACE 208 11 60
PACE 210 8 34
PACE 225 2 12
PACE 226 13 49
PACE 240 2 33
PACE 241 6 20
PACE 250 4 102
PACE 270 6 125
PACE 272 7 48
PACE 290 12 114
PACE 410 4 38
PACE 411 8 44
PACE 412 2 16
PACE 423 6 46
PACE 619 2 6
PACE 620 2 4

PACE 623 2 5
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time. Schools and hospitals are population-concentrated public facilities with more 
demand generally, each of which should have at least one pickup location. Patients 
in hospitals are generally travel-disadvantaged, which requires more evacuation 
resources. Most people go to a shopping plaza via private vehicle, so there is 
minimal need to dispatch buses if sharing a ride is encouraged. 

At the time the threat is received, every bus serving route 270 will do a 
preliminary search for any suspicious package/people. In the meantime, 
on-board passengers need to get off the bus and be directed to the nearest 
pickup location for evacuation. Meanwhile, passengers waiting for transit 
services in the affected area will be notified to leave the area by any means. 
In-service buses that are about to drive into the affected area should 
immediately terminate service by dropping off current on-board passengers 
to the nearest shelter and serve as evacuation vehicles afterwards. For both 
Metra UP-NW line and CTA blue line train services, before knowing the bomb 
threat will not jeopardize operations, the service will be temporarily shut down, 
notifying the on-board passengers of the situation. After the affected area is 
narrowed down, knowing that train services can be operated safely, both the 
Metra UP-NW and CTA blue line can serve as a high-efficiency evacuation mode 
by using Jefferson Park as a major evacuation hub. 

In terms of the surface transportation network, the in-range segments and 
intersections will be closed accordingly. Vehicles will be asked to leave the area 
to allow space for service vehicles including evacuation vehicles, firetrucks, 
ambulances, and so forth. 

The scenario is complicated because of the high level of uncertainty brought 
by limited information. The affected area may shrink depending on how much 
information gathered as time passes, and the evacuation strategy may be 
updated accordingly. 

Another case of the on-board bomb scenario is that the bomb is detonated 
without any prior notification. This case is a pure point event in terms of space 
and time. The geographic pattern is very similar to the off-board bomb scenario. 
Therefore, more details are revealed in the offboard scenario built. 

Off-Board Bomb Scenario 
This scenario is when there is a bomb threat and the transit service can be used 
to evacuate the immediate premises and nearby vicinity for minimal damage. A 
dense suburban transportation center was selected as a target location. 

Selection of Bomb Attack Location and Time 
The Jefferson Park Transit Center is an intermodal passenger transport center 
in the northwest suburbs of Chicago and serves as a CTA train and Metra station 
as well as a bus terminal. The Metra Jefferson Park railroad station is located on 
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the first-floor platform level. It is on the Union Pacific/Northwest Line and is 9.1 
miles away from Ogilvie Transportation Center in Downtown Chicago, the inbound 
terminal of this Line. The CTA Blue line Jefferson Park station is located on the 
B1 platform level, roughly 25 minutes away from the Chicago loop. The ground 
level of the Jefferson Park Transit Center serves as a terminal for 13 PACE/CTA bus 
routes in total. 

Bombs can be detonated at any time, but they can cause catastrophic damage 
during rush hours on a typical weekday when the travel demand is the highest. 
After detonation, it may take days or even weeks to restore affected services 
depending on the severity level. Therefore, this scenario was simulated to occur 
during morning rush hour on a weekday. 

Scenario Development 
The off-board bomb scenario also has two cases, depending on whether a prior 
notification is received or not. If a prior notification is received, the evacuation 
team needs to dispatch vehicles to evacuate people in that vicinity. Meanwhile, 
some transit services and a part of the network will be changed or even 
shut down accordingly. If the bomb is the detonated without any notice, the 
evacuation team also needs to conduct the same workflow. Therefore, the two 
cases can follow an identical evacuation strategy in a holistic way. 

Possible bomb types can be complex, as there is no space limitation for carrying 
a bomb in this case. For example, the bomb can be carried inside a briefcase/ 
suitcase and dumped in a dust bin in the station, or it can be a large bomb 
carried by a small van parked in a parking lot. In this scenario, the bomb type 
was selected to be carried by a small moving van parked in the parking lot, 
where the outdoor stand-off distance is 3,750 ft. 

Affected Transportation Supply 
Figure 9-15 illustrates the stand-off area of the Jefferson Park Transit Center. It 
covers 4 transportation analysis zones (TAZs) and will affect 5,753 households 
with 14,487 residents. There are 6 schools, 1 hospitals/nursing centers, and 5 
shopping plazas within this range. It affects 111 transit stops/stations, including 
90 CTA bus stops, 1 CTA train station, 2 Metra stations, and 18 PACE bus stops. 
Table 9-3 shows details of the affected transit services. In terms of the surface 
transportation infrastructure, the range covers 141 major intersections and 
affects 28 major roads, 5 minor roads, 9 ramps, and part of I-90/94. 
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Figure 9-15  PACE bus Route 270 area map  

Agency Route Number of  
Patterns Affected

Number of 
Trips Affected

CTA 56 4 157
CTA 68 4 95
CTA 81 2 250
CTA 81W 2 80
CTA 85 2 189
CTA 85A 2 78
CTA 88 4 91
CTA 91 3 156
CTA 92 3 155
CTA X98 1 1
CTA Blue 9 370

Metra MD-N 18 45
Metra UP-NW 22 45
PACE 225 2 12
PACE 226 13 49
PACE 270 6 125

Table 9-3  Transit Services Expected to be Affected   
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At the time the threat is received, the agency needs to notify the field transit 
operator of the emergency and guide them to search for any suspicious activity. 
In the meantime, the Metra and CTA Blue lines will pause service and post 
the information, notifying all passengers including those who want to use 
the service in the next few hours. Since the ground level of the Jefferson Park 
Transit Center is used as a terminal for multiple bus routes, it can be used as a 
pickup spot to evacuate on-platform passengers. The buses will transport these 
passengers to the nearest shelters outside the stand-off area. In-service buses 
heading to the affected area should drive to the nearest shelters directly and 
serve as evacuation vehicles afterwards. 

For the surface transportation network, the in-range segments and 
intersections will be closed accordingly. On the highway front, all nearby 
segments of I-90/94 will be closed, and highway users will be directed to use 
arterials in the vicinity as alternatives, such as Irving Park Road. 

Case 2: PACE Bus Service Shutdown 
by Des Plaines River Flooding 
The PACE bus system will act an important role in emergency scenarios. As 
the Chicago metropolitan area has rich water resources, flooding records and 
threats exist every year. Appropriate and practical evacuation strategies and 
guidelines are required to be developed to ensure efficiency and effectiveness 
during the evacuation. 

Weather data, including precipitation, catchment, and flooding records, will 
be analyzed for the specific region to determine the case study area. Flooding 
occurrence chance, impact severity level, and potential consequences are taken 
into consideration to conduct the case study. Moreover, to make the case study 
more practical, a demand-responsive transit system with the capability of 
evacuees and access to the specific area issues were included. 

Flooding 
Flooding is the overflow of water that submerges land, which is usually dry. 
Reasons for flooding vary; it can be the overflow of water from natural water 
bodies such as rivers, lakes, or oceans or artificial structures such as levees and 
dams. Natural disasters such as storms and hurricanes are another reason for 
flooding. Huge amounts of water are not the only threat to people and property; 
moving water with speed and debris in the water contribute to extra damages. 

Floods are relative predictable, and protective actions and evacuation plans 
should be conducted before the estimated time. All transit evacuation routes 
must be above the estimated flood elevation; potential inundation must be 
considered. If complete evacuation is not practical, locations of high-ground 
shelters and safe routes should be noted to the affected population. Attention is 
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particularly required for recreational areas, as visitors may not be familiar with 
evacuation routes. 

Description of Des Plaines River 
As shown in Figure 9-16, the Des Plaines River is 133 miles long; the stream flows 
between southern Wisconsin and northern Illinois, the longest stream in the 
Chicago area. Merging with the Kankakee River southwest of Joliet to form the 
Illinois River, it is a significant tributary of the Mississippi River. The Des Plaines 
River originated from south of Union Grove, Wisconsin, flows in the south 
direction, and enters Illinois at Russell. Through Lake and Cook counties, the river 
turns  southwest from Salt Creek, a major tributary, and joins the river from Lyons, 
Illinois. Between DuPage and Will counties, it runs parallel to the Chicago Sanitary 
and Ship Canal, which reverses the flow of the Chicago River. Until Joliet, Illinois, it 
flows to the confluence of Kankakee, the beginning of the Illinois River. 

SECTION | 9

Figure 9-16  Des Plaines River watershed area 
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During wet weather, the Des Plaines River sometimes pours into Mud Lake to 
the Chicago River rather than to the usual westward direction. Chicago Portage 
is known as the wetland between the Des Plaines River and the Chicago River. 
The watershed covers 1,554 square miles in Illinois and 1,320 square miles in 
Wisconsin. Major streams include Des Plaines River, DuPage River, Chicago 
Sanitary and Ship Canal, Salt Creek, Mill Creek, Indian Creek, Willow Creek, Lily 
Cache Creek, Grant Creek, Hickory Creek, and Spring Creek (FEMA, 2014). Most 
of the watershed of the rural and agricultural areas is in Kenosha, Wisconsin, 
and Lake and Will, Illinois. The urban and industrial part belong primarily to the 
greater Chicago metropolitan area. 

Flooding of Des Plaines River 
Flooding is a major problem of the Des Plaines River; damage is estimated at $25 
million per year along the Des Plaines River in Lake and Cook counties. According 
to the historical record, maximum flooding occurred in September 1986, causing 
damage to 10,000 dwellings and 263 business and industrial sites. At least 
15,000 residents needed to evacuate, and 7 people lost their lives (Figure 9-17). 
Total cost exceeded $35 million, with the transportation systems in the cities 
along the river suffering severe damages. In the following year, rain in Cook and 
DuPage counties had damages of $77.6 million. More than 100 cars, trucks, and 
buses were stranded on the Eden's Expressway, and 300 vehicles were trapped 
in intersections soaked by water. Four deaths occurred, and 3,000 homes were 
damaged. Over 10,000 structures were destroyed in the two years. Major flooding 
has occurred along the Des Plaines River 15 times in the past 60 years, and more 
watershed has developed, which increases the risk of potential flooding damage. 

SECTION  | 9

Figure 9-17  Flooding in 1986 
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Flooding Risk Analysis 
Flooding is the overflow of an accumulation water that submerges land that 
is usually dry. Severe flooding threatens lives of humans and causes severe 
damage to manufactured structures such as dams and buildings. Even mild 
flooding can impact properties and cause economic loss. 

Flooding prediction methods have improved significantly to inform people 
where a flooding may occur and how to mitigate damages. According to Federal 
Emergency Management Agency (FEMA), flooding risk refers to the vulnerability 
estimated by production of the probability of flooding and the consequences of 
flooding, as below: 

𝐹𝑙𝑜𝑜𝑑 𝑅𝑖𝑠𝑘 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

Probability is the chance of flooding in a given area. It may vary from year to 
year due to changes in physical, environmental, and human activity-related 
factors. Probability prediction accuracy is mainly influenced by the quality of 
historical data and modeling approaches. Consequences of flooding are the 
estimation of damages, especially human activities that may result during and 
after flooding. More residents and more structures may lead to more severe 
consequences. 

A popular flood loss estimation tool is Hazus, developed by FEMA and originally 
used for earthquake risk assessment. With updating and revising, Hazus is 
now a powerful tool for hurricane loss estimation as well. Assisted by Hazus, 
emergency management can conduct flooding risk analysis and evaluate the 
cost-effectiveness of flooding mitigation. Hazus is refined every time additional 
reliable data are applied. 

Flooding losses are typically expressed as currency, and losses within a 
particular area attracts more attention. Methodology and reliable data are 
major factors influencing the quality of final estimation of potential losses. 
Losses include but are not limit to: 

• Infrastructure – Two major types of infrastructure are considered in the
estimate—utility systems and transportation systems. Utility systems
include electric power, communication, petrol and natural gas, and water
reserve systems. Transportation systems include highway, railway, ports,
and airport systems.

• Residential properties – All types of residential buildings are included—
apartments, townhouses, and houses. Losses are estimated to be the costs
of repairing or rebuilding.

• Commercial assets – Building types include retail, wholesale, and parking
facilities; repairing and rebuilding cost are estimated to be the losses, and
goods and inventory in commercial buildings are also considered.

SECTION | 9
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• Other – Buildings and properties belonging to industrial, agriculture,
government, and education sectors are in this category.

Des Plaines River Flooding Map 
Figure 9-18 illustrates streams of concern for the northern and southern portions 
of the Des Plaines River watershed, and Figure 9-19 displays locations of interstate 
and major highways along the Des Plaines River. Both maps show that the 
concentrated areas lacking mitigating measures could be potential risk areas. 

Figure 9-18  Streams of concern of Des Plaines River 
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Flooding Risk Locations 
Figure 9-20 shows potential areas or essential facilities at risk of flooding. Any 
potential risk areas could be used to conduct the case study. 

Figure 9-20  Map of risk of flooding 

Figure 9-19  Primary road system and overtopping map along Des Plaines River watershed 
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General Evacuation Strategies 
Time durations that allow for city jurisdictions to prepare for reaction plans are 
different depending on the causes and distance of flooding origin. In upstream 
areas, intense storms might create a flood within a few hours or even minutes; 
downstream locations might take one day or sometimes weeks to form a flood. 
In addition to the common types of flooding formed by accumulation of water 
during rain and intense storms, an uncommon type of flooding can develop 
from snowmelt. Even though it might take months to develop, inspection is 
required. Essential considerations include: 

• Understanding protective facilities in or near the jurisdiction
• Keeping in touch with monitor stations to update flooding information
• Identifying and present current and potential inundated areas
• Disseminating flood information, give suggestions to evacuees
• Recognizing the possible route for transit operators to rescue affected

population
• Determining the shelter locations and stops along the route
• Assessing the loss of transit resources and use the available resources
• Estimating the number of affected population and locate their positions
• Refining and optimizing the rescue routes

Case Study of Des Plaines River Flooding and Power Outage 
The Des Plaines River flows through Des Plaines, Elk Grove, Glenview, Park 
Ridge, and Morton Grove as well as Chicago (Figure 9-21). Historically, many 
flooding events have occurred near the riversides due to its low elevation. The 
lowest elevation at the river is 185 ft above sea level, as depicted in Figure 9-22, 
and nearby residential and commercial areas with the elevation of 190 to 195 ft 
are likely to have flooding problems. 

Figure 9-21  Historical flooding event map, Des Plaines area  
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Figure 9-23  Case study area  

Figure 9-22  Contour map, Des Plaines area 

Based on information from the historical flooding event and contour maps, the 
boundary of the case study area was selected as Golf Road on the north, Harlem 
Avenue on the east, Mannheim Road on the west, and Lawrence Avenue on the 
south. The geographical position of the case study area and historical flooding 
event locations are shown as Figures 9-23 and 9-24.
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Figure 9-24  Historical flooding event map  

In the case study area, two major interstate highways, I-90 and I-294, pass through 
it as east/west oriented and south/north oriented, respectively. According to the 
2017 CTA Annual Ridership Report, the CTA Blueline along the I-90 alignment is a 
main public transit route that connects O’Hare International Airport and the city 
of Chicago, conveying 26,833,303 passengers annually. As shown in Figure 9-25, 
Metra commuter rail, multiple CTA routes, and PACE bus routes also pass through 
it, making this traffic-intensive area an ideal place for the case study.

Figure 9-25  Transit routes in study area 
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PACE Bus and Northwest Division Garage 
The Northwest division PACE bus garage is located near the boundary of the 
case study area. It is on the E Northwest highway, which is the extension of Miner 
Street passing through downtown Des Plaines, 1.2 miles from the Metra Des 
Plaines station. This garage was used as an initial destination for all evacuation 
for this case study. The Northwest Division garage operates two types of buses, as 
shown in Table 9-4. Typically, 20% of PACE buses are in the garage; therefore, it is 
assumed that 25 vehicles could be deployed for flooding events. 

Weather in Des Plaines Area 
Precipitation 

Based on data of national averages from the Weather Service of the National 
Oceanic and Atmospheric Administration (NOAA), the highest daily precipitation 
occurs in August and the lowest in February in the Des Plaines area. From the 
daily high records for July to September, over six inches of rain occurs. 

Figure 9-26  Monthly precipitation distribution in Des Plaines area 

Bus Model Bus Type Seats Standees Number of 
Vehicles

ElDorado EZII Short bus 27 5 17
ElDorado AXESS Standard bus 36 9 105

Table 9-4  PACE Buses, Northwest Division Garage 

Precipitation Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Avg (in./day) 1.73 1.77 2.52 3.39 3.66 3.46 3.7 4.88 3.23 3.15 3.15 2.24
Daily (in./day) 2.76 3.34 3.2 3.83 4.12 4.64 6.86 6.49 6.64 3.94 3.34 2.66

Table 9-5  Precipitation in Des Plaines Area 
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Figure 9-27  Average monthly gauge heights in Des Plaines Area 

River Stages 
The U.S. Geological Survey operates one river stream-gauge station on the Des 
Plaines River in cooperation with U.S. Army Corps of Engineers (USACE). The 
gauge is located at the Euclid Avenue Bridge with data collection since October 
1, 1993. The average annual height of the Des Plaines River is 11.07 ft, and 
highest average gauge heights are 11.7 ft in April and May (Figure 9-27). Overall, 
the average monthly gauge does not show much difference by month; however, 
depending on precipitation, the river gauge was measured as high as 16.3 ft and 
as low as 7.8 ft in 2018 (Figure 9-28). 

Figure 9-28  Des Plaines River gauge height changes, 2018 
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With extensive flooding events occurring near the Des Plaines River, FEMA set 
flood categories according to the river stream-gauge height. Four categories of 
flood stages were classified—Action Stage, Flood Stage, Moderate Flood Stage, 
and Major Flood Stage, as described in Figure 9-29 and Table 9-6.

Historically, flooding events in Des Plaines area have occurred due to intensive 
precipitation or a combination of high river stage caused by continuous 
precipitation and a moderate amount of precipitation. For example, 6.86-in. 
daily precipitation was shown on September 13, 2008, and the stream-gauge 
Des Plaines River increased from 11.14 ft to 19 ft in 20 hours (Figure 9-30). As a 
result, the downtown Des Planes area was flooded. In addition, the Des Plaines 
River flooded with 3.54 in. of daily precipitation. The river height was 15.4 ft 
because of a week of rains before the downpour in 7 hours on April 18, 2014; at 
the end, the river flooded (Figure 9-31).

Figure 9-29  Categories of FEMA Flood stages for Des Plaines River 

Flood Category River Gauge 
Height (ft) Description

Major Flood 
Stage 19

At this stage, life-threatening flooding is expected. 
Significant to catastrophic. Low-lying areas 
completely inundated is likely. Structures may 
be submerged. Large-scale evacuations may be 
needed 

Moderate Flood 
Stage 18

At this level, inundation of buildings begins. 
Roads are likely to be closed and some areas cut 
off, and some evacuations may be needed 

Flood Stage 15

At this stage, minor flooding is expected. 
Slightly above flood stage. Few buildings can be 
inundated, and water may go under buildings 
on stilts or higher elevations; however, roads, 
parklands, and lawns may be covered with water 

Action Stage 13.5

Water surface is near or slightly above the top 
of the river bank, but no flood damages on 
manmade structures. In general, any water 
overflowing is limited to small areas of parkland 
or marshland. 

Table 9-6  Description of FEMA Flood Stages  
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Figure 9-30  Des Plaines River flooding,  September 13, 2008 

Des Plaines River Flooding Scenario 
Background 

For the case study, it was assumed that a flooding event lasted for one full day, 
and the stage of the Des Plaines River was 11 ft, the annual average stage of the 
river before the rain. Based on Des Plaines area flooding records for September 
13, 2008, 6–7 in. of precipitation were required to reach the Major Flood stage; 
therefore, one weekday of September was selected among the months of the 
daily record of precipitation over 6 in. (Figure 9-32). Precipitation and the river 
stage follow the same pattern of flooding as on September 13, 2008.

Figure 9-31  Des Plaines River flooding, April 18, 2014   
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Flood Stages 

The flood stages were assumed as follows: At 10:00 am, the Des Plaines River 
stream-gauge reached up to 15.6 ft after hours of rain from 1:00 am. At this 
stage, some segments of South River Road were covered by flooded water, and 
parklands near the river were inundated. Due to the South River road closure, 
PACE bus route 230 rerouted its path from South River road to Lee Street and 
Oakton Street. 

Moderate Flood Stages 

At 3:00 pm, the stream-gauge of the Des Plaines River reached 18 ft, which is a 
Moderate Flood stage. At this level, the residential area along with South River 
Road was inundated, and the flooding area extended toward North Elementary 
School. As such, evacuation for the 523 students was required before further 

Figure 9-32  Changes in Des Plaines River flood stages after flooding event    

Figure 9-33  Des Plaines River flood stages   



FEDERAL TRANSIT ADMINISTRATION 	 237

SECTION  | 9

inundation. For the evacuation, PACE bus routes 208, 234, and 412, which were 
already operating, were deployed first, and 10 PACE buses from the PACE Bus 
Northwest Division garage were deployed to load the remaining demand. In 
addition to South River Road, Busse Highway was also covered by water at this 
stage; as a result, additional PACE bus routes, including routes 209 and 226, 
were needed to bypass the flooded segments of the road using Miner Street and 
N Northwest Highway. 

Figure 9-34  Des Plaines River moderate flood stage 

Major Flood Stage  
At 9:00 pm, the river stream-gauge height of the Des Plaines river was over 19 
ft, and the downtown Des Plaines area near the Des Plaines Metra Station was 
inundated. The elevation of the Metra railroad was slightly higher than Miner 
Street where the Metra station is located, so there was no problem to operate 
Metra commuter rail. However, the Des Plaines Metra station was inundated, 
so passengers could not use the station. As a result, the 151 passengers (Table 
9-7) expected to board or alight from the Metra UP-NW at Des Plaines Station in 
the evening period needed to use Metra Dee Road station or Metra Cumberland 
station. For those passengers, PACE bus routes 209, 240, and 250 extended their 
routes to the station to handle initial demand, then two PACE buses from the 
Northwest Division garage were deployed to each station to manage ridership. 
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Table 9-7  Des Plaines River flood stages   

At this stage, Miner Street, E Rand Street, and Busse Highway near the Des 
Plaines area were closed because of inundation. These roads are main access 
roads of the area, so PACE bus routes 209, 220, 230, and 250 passing through 
downtown Des Plaines could not be operated. E Golf Road, I-294, and E 
Dempster Road were used as evacuation roads. 

There are 58,364 residents in the city of Des Plaines, and from the flooding 
event, 3.6% of land was submerged; however, this submerged residential area 
is located downtown, and there are many multi-floor condos; As a result, it 
was assumed that 10% of residents (5,836) were living in the flooded area as 
evacuees. In addition, it was assumed that 10% of these 5,836 people would use 
transit service for evacuation rather than using personal vehicles. In sum, about 
600 residents in the submerged area needed to be evacuated using PACE buses. 
For the evacuation, 20 PACE buses from the Northwest Division garage were 
deployed at the border of flooding area to the nearest shelters. 

UP-NW Direction AM Peak Midday PM Peak Evening Total

Boarding
Inbound 717 112 105 38 972

Outbound 19 25 120 6 170

Alighting
Inbound 100 28 13 16 157

Outbound 123 105 725 91 1,044
"AM Peak" refers to from Start of service to 9:15 am. "Midday" refers to from 9:16 am to 3:29 pm. 
"PM Peak" refers to from 3:30 am to 6:45 pm. "Evening" refers to from 6:46 pm to End of Service.

Figure 9-35  Des Plaines River major flood stage 
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Power Outages 
Usually, an emergency event does not occur alone—it comes with multiple 
problems triggered by the event. In this case study, it was assumed that a 
predictable event and an unpredictable event occurred at the same time in the 
study area; as a result, it would be required to set a multi-dimensional plan that 
could be helpful to handle real-world events. For the case study, it was assumed 
that the predictable event, Des Plaines River flooding, was forecasted before the 
event, and a power outage occurred on the first day of downpour because of the 
flooding sites in the Des Plaines area. 

Table 9-8  Flooding Event by Flooding Stage and Countermeasures in Des Plaines Area  

Time FEMA Flood 
Category Event Demand Transit Service Countermeasure Supply

10:00 AM
Flood stage 

(river stream 
gauge: 15.4 ft)

South River Rd 
closure PACE bus route 230 Re-routing: Lee St 

and Oakton St

3:00 PM
Moderate 

flood stage 
(river stream 
gauge: 18 ft)

Busy Hwy PACE bus routes 
209, 226

Re-routing: 
Miner St and N 
Northwest Hwy

Elk Blvd PACE bus routes 
208, 234

Re-routing:  
Rand Rd

NW  
Elementary 

School 
evacuation

523

Emergency 
dispatch: PACE bus 

routes 208, 234, 
412

135

10 extra pace 
buses from NW 
Division Garage

450

9:00 PM

Major flood 
stage (river 

stream gauge: 
19ft)

Miner St 
closure

PACE bus routes 
208, 226, 230, 250

Transit service 
closure

Des Plaines 
Metra station 

shutdown
151

Metra UP-NW

Dispatch and 
operate 2

extra PACE buses 
from NW Division 
Garage to Dee Rd 

Station

90

Dispatch and 
operate 2extra 

PACE buses from 
NW Division Garage 

to Cumberland 
Station

90

Downtown 
Des Plaines 
evacuation

600

Dispatch 15 extra 
PACE

buses to transport 
residents to nearest 

shelters

Dispatch 15 extra 
PACE

buses to transport 
residents to 

nearest shelters

675
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CTA Blue Line Loss of Power Records 

On June 6, 2016, CTA Blue Line trains stopped after a loss of power. Two 
southbound trains lost power just after 9:00 am, and trains were single-tracking 
for four hours on the northbound tracks. A total of 200 CTA Blue Line passengers 
were evacuated outside the Clinton Station with the assistance of the Chicago Fire 
Department after the two trains lost power. At first, they were escorted along the 
tracks to the platform and then rerouted to their destinations using CTA buses. 

On November 1, 2017, after a power outage at the Jefferson Park Station on 
the northwest side, CTA Blue Line trains bound for Forest Park were delayed 
from Wednesday night to early Thursday. Trains were standing at Jefferson 
Park, and service was suspended between Rosemont and Jefferson Park. CTA 
asked people to use alternate transit while crews work to restore power; as a 
result, CTA buses operate between O'Hare and Jefferson Park and Harlem and 
Jefferson Park. At the O’Hare and Jefferson Park route, 20 buses are operated, 
and 56 buses provide alternate service between Harlem and Jefferson Park 
route. Normal service restarts one hour later. 

CTA Blue Line Loss of Power Scenario 

At 11:00 pm, because major flooding occurred in the Des Plaines area and 
nearby riverside area at 9:00 pm, a power outage occurred at CTA Blue Line 
between Cumberland station and Rosemont Station. This caused outbound 
trains toward O’Hare International Airport to be stopped at Cumberland Station, 
leading to service suspension between Cumberland and O’Hare. 

Figure 9-36  CTA Blue Line Station at Cumberland and Rosemont 



FEDERAL TRANSIT ADMINISTRATION 	 241

SECTION  | 9

Table 9-9  CTA Blue Line Demand, Rosemont and O’Hare International Airport 

The CTA Blue Line operates normally between Cumberland and Harlem 
stations, and from Cumberland Station, passengers were asked to transfer 
to PACE buses for travel to the Rosemont and O’Hare stations. From 11:00 
pm, many PACE bus routes were not in service. As a result, 4–10 buses could 
be deployed from the PACE Northwest Division garage for both inbound and 
outbound travel between the O’Hare and Cumberland stations, depending on 
demand (Table 9-9).

Advocate Lutheran General Hospital Power Outage Scenario 

At 11:00 pm, a power outage event occurred at the Advocate Lutheran General 
Hospital. The hospitalized patients and employees of the hospital needed to 
be evacuated to the nearest shelters or to the Presence Resurrection Medical 
Center for patients who needed intensive care. Advocate Hospital has 625 beds 
for hospitalization; for demand estimation, it was assumed that 70% of beds 
were occupied and 100 employees were in the hospital for the night shift. As a 
result, 600 people would need to be evacuated, including guests of patients. 
The PACE Northwest Division garage is located 5.2 miles from the hospital if 
buses are bypassing the flooding area using Golf Road, and it takes 12 minutes 
from the hospital. A total of 15 PACE buses from the garage would be deployed 
to the hospital for evacuation.

Figure 9-37  Two major hospitals in case study area 

Time 23 0 1 2 3 4

Inbound
Headway (min) 

Frequency (per hr)
15
4

15
3

10
6

15
4

15
4

10
8

Demand (passengers per hr) 209 157 314 209 209 419

Outbound
Headway (min) 

Frequency (per hr)
10
6

15
4

60
1

15
4

15
4

10
7

Demand (passengers per hr) 314 209 52 209 209 366
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Case 3: Metra BNSF Line/Cass Avenue Grade 
Crossing Failure from Hazmat Truck Crashes 
The case study first analyzed when the event occurred and the vicinity required 
to be evacuated and the impacts assessed. Nearby PACE buses would be 
re-routed to the event location and aid the process of evacuation. After the 
event, if the emergency causes a complete service failure at a local point, the 
case study will be analyzed. In case when the highway-rail grade crossing is 
damaged, there will be some time required for complete service restoration, 
and alternate routing is needed for bus routes using the service as well the 
normal traffic using the route. Rail service, which uses the track, requires 
substitution by alternate services by means of shuttles service along the track to 
ensure service and accessibility to train riders. In this situation, PACE buses can 
be used to provide shuttle services without causing major service inadequacies 
to original patrons on the original routing network and to the new riders who 
are using the service as an alternate to rail until the service is restored. 

BNSF Background Information 
The BNSF Railway Line is a Metra commuter rail line operated by the BNSF 
Railway and serves one of the busiest origin-destination areas, Chicago and 
Aurora. Timetables show that 31 of 47 trains leaving Chicago headed to Aurora 
in July 2017. Comparably, 47 trains arrived in Chicago, of which 29 started from 
Aurora. In 2010, the BNSF Railway Line continued to have the highest weekday 
ridership of the 11 Metra lines—64,600, on average, per day. 

Event Counter Measure Time
Demand (Passenger) Supply (Bus)
Inbound Outbound Inbound Outbound

Outbound CTA

Extra PACE buses 
from Northwest 

Division
Garage, transport
passengers from
Cumberland to 

O' Hare

11:00 pm 209 314 5 7
12:00 am 157 209 4 5
1:00 am 314 52 7 2
2:00 am 209 209 5 5
3:00 am 209 209 5 5
4:00 am 419 366 10 9

Evacuation 
of Advocate 

Lutheran

Dispatch extra  
PACE buses

from Northwest 
General Hospital 

Division Garage to 
transport patients 
to nearest shelters 

or Presence  
Resurrection  

Medical Center

11:00 pm 600 15

Table 9-10  Power Outage Scenario and Countermeasures by Hour  
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The first rail service from Aurora to Chicago began in 1850, a 12-mile railroad 
in length from Aurora east to Chicago via UP west (Galena and Chicago Union 
tracks). In 1855, it became a part of the Chicago Burlington and Quincy. The 
service line become congested, and in 1864, Chicago, Burlington and Quincy built 
their own direct line and started to serve passengers. The name changed to BNSF, 
from Burlington Northern to Burlington Northern Santa Fe. To improve the service 
level, this line was the first to use bi-level coaches. Now, BNSF is operated under 
an agreement called a “purchase of service agreement” between BNSF Railway 
and Metra. Metra owns the equipment and BNSF is responsible for management 
and employment. Metra plans to study the feasibility of extending the service line 
to Plano, Illinois, which beyond the current terminal, Aurora. 

Hazmat 

Hazmat is the abbreviation for “hazardous materials” that may pose a risk to 
human health, public property, or the environment. Many subcategories are 
included, such as toxic materials, chemical materials, fuels, nuclear products, 
and biological and radiological products. The forms of hazmat vary, which may 
be shown as liquids, solids gases, dust, smoke, gas, mist, vapor, or combinations 
of them. 

Hazmat spills may cause severe health problems, injuries, or even death 
to surrounding residents and animals and also poses damage to private or 
public buildings and properties and the environment. Even if the hazmat is 
dangerous, it is essential in daily life, meaning that the risk is close, as related 
materials need to be shipped from one place to another via the nation's 
highways, railroads, waterways, and pipelines. Every year, thousands of hazmat 
accidents occur; according to the Houston Chronicle, more than 1,000 heavy 

Figure 9-38  BNSF route map 
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truck accidents occurred in 2017, and 10% of local large truck accidents involved 
hazmat incidents.

 

All truck companies and carriers that transport hazardous materials are 
required to have a federal hazardous materials safety permit. The Federal 
Motor Carrier Safety Administration (FMCSA) classifies hazardous materials 
into the nine categories listed below; if one truck transports a particular type of 
hazardous material, the truck must be categorized and marked properly, and 
every type of hazardous material in the nine categories poses a unique risk if an 
emergency occurs: 

• Explosives
• Gases, including flammable and toxic gases
• Flammable liquid and combustible liquid
• Flammable solid, spontaneously combustible and dangerous when wet
• Oxidizer and organic peroxide
• Poison (toxic) and poison inhalation hazard
• Radioactive
• Corrosive
• Miscellaneous

Figure 9-39  Hazmat example
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In general, the consequences of hazardous materials include thermal burn 
injuries, explosions resulting in burn injuries, amputation injuries, loss of 
hearing, chemical burns, poisoning, exposure to cancer causing chemicals, 
and others. Many factors affect the estimation of consequences. U.S. 
Department of Defense (USDOD) provides a method called CARVER to evaluate 
the consequences to people and environmental damages. CARVER is an 
acronym for Criticality, Accessibility, Recuperability, Vulnerability, Effect, and 
Recognizability. It assigns a relative value to illustrate severity, ranging from 1 to 
5, with consequences becoming more severe.

Potential consequences of hazardous materials truck accidents depend on the 
type and quantity of materials, location of accidents, surrounding environment, 
and weather condition. To accurately estimate the hazard and risk of 
consequences, the chemical and physical properties of the material should be 
understood, how much of the material is released, and how fast the damage will 
spread under the certain environmental and weather conditions. The affected 
population related to population density in the given location, the number of 

Figure 9-40  Hazardous materials signs (Source: fmcsa.dot.gov) 

Consequence 
Value People Environment 

1 No deaths or serious injuries; only relatively 
minor injuries Less than $1 million

2 1 to 10 deaths or serious injuries $1 million to $10 million
3 11 to 100 deaths or serious injuries Over $10 million to $100 million
4 101 to 1,000 deaths or serious injuries Over $100 million to $1 billion
5 More than 1,000 deaths or serious injuries Over $1 billion

Table 9-11  Hazmat Accident Consequence Levels
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special-needs populations, social-economic conditions, and transit evacuation 
resource supply should also be assessed. Environmental damages depend 
on the specific environmental features, the presence of waterways, parks or 
preserves, and how fast and how far the hazardous materials would spread, 
including wind speed, humidity, temperature, and so on. 

Human-Health Consequences 
The focus is to estimate number of people suffering from a hazardous material 
accident. Before estimating the number of affected population, it should 
first identify the affected area. Estimation of the affected area depends on 
the type of hazardous materials, the chemical and physical attributes, and 
environmental conditions. Previous work provides useful methods. For 
instance, the ERG and the Argonne report (Kawprasert and Barkan 2010) 
provides specific protection actions for responders. Several modeling tools 
in ERG could help determine more details of the affected area for different 
hazardous materials. 

The Non-Radioactive Hazardous Material Routing Guidelines (NRHM 1996) 
present a simpler method to estimate the hazard distance, as shown in Table 
9-12. It provides a guide to hazard distance, typically 0.5 miles (800 meters) for 
non-radioactive hazardous materials, infectious substances, or radioactive 
materials. In addition, weather conditions such as wind speed and direction 
should be considered. In this respect, the affected circle is a dynamic circle by 
both the location and radius. 

To estimate the number of people within the impacted area, census data can 
be used with the help of Geographic Information System (GIS) software and 
counting the residents. However, the number will be different for daytime vs. 
nighttime; in daytime, there will be fewer residents but more transit people, and 
the situation is reversed at night. On average, the estimated population is 

Table 9-12  Hazard Distances used in NRHM Routing Guidelines 

Hazardous Materials Hazard Distances 
(mi)

Explosives 1
Flammable gas 0.5
Toxic gases 5
Flammable/combustible liquid 0.5
Flammable solid, spontaneously combustible, dangerous when wet 0.5
Oxidizer/organic peroxide 0.5
Poisonous (not gas) 5
Corrosive 0.5
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p𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑝 𝑒𝑜𝑝𝑙𝑒 𝑚𝑖𝑙𝑒𝑠2 × 𝑎ff𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎(𝑚𝑖𝑙𝑒𝑠2)

Note that the area can be a circle or rectangle depending on different hazmat 
accidents. 

Environmental Consequences 

A similar approach can be adopted to estimate environmental consequences. 
Usually, consideration includes property damages and land/aquatic 
contamination. Property damages can be assessed based on the total damaged 
area or structure, multiplying the unit price to arrive at total property damages. 
Fire and explosives always cause more property damage than hazardous fluid or 
gas. The circular area specified by this radius is the suggested area to be used to 
estimate damages to nearby structures. Alternatively, the dispersion code in the 
Areal Location of Hazardous Atmospheres model (ALOHA 2007) has an option 
to estimate the damage radius from fires and BLEVEs. The user only needs to 
specify the material and quantity present. 

For land/aquatic contamination, the concern is how many plants and trees are 
killed by the hazmat accident immediately and potential future damages. Land/
aquatic contamination is sensitive to the type of hazmat; for example, ammonia 
does much damage on wetlands because of its aquatic toxicity but little damage 
to solids. NRHM (2007) may be used to estimate the potential affected area. 

Table 9-13 shows representative values for different types of land use to 
estimate economic losses on a per-acre basis. However, the number maybe not 
valid for all regions; each region should develop its own value table to estimate 
losses. If the property is not totally destroyed, a specific percentage of the value 
may be used to replace the original value, such as 10% or 20%. 

Type  
Structure

Residential Commercial Industrial 
Rural $ 150,000 $ 1.2 million $ 2.4 million

Suburban $ 1.2 million $ 12 million $ 24 million
Urban $ 8 million $ 50 million $ 80 million

Land Use  
Environment

Farm Land Wetland
Fallow $ 200 $ 50,000

Low-value crop $ 1,000 $ 100,000
High-value crop $ 400,000 $ 400,000

Table 9-13  Estimated Unit Values for Damages to Structures 

Table 9-14  Estimated Unit Values for Damages to Environment
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Case Study 
The case study location is the Metra BNSF Line and Cass Avenue rail-highway 
crossing intersection. The intersection is close to BNSF Westmont station in 
Westmont, Illinois. Distance to Union Station is 19.4 miles. The station house is 
diagonally across from the Village Hall at W Quincy and S Lincoln streets. Bus 
connections including PACE bus routes 661, 662, 665 and 715. 

Demand 

Census Data 

The studied rail-highway crossing intersection is the cross of the Metra BNSF 
Line and Cass Avenue, which is close to the BNSF Westmont station. As shown 
in Table 9-14, the hazard distance depends on the type and characteristics of 
materials. For example, radioactive or nonradioactive may range from a few 
hundred meters to one mile, without considering extreme weather conditions. 
For this case study, we assumed a severe vehicle crash involving a hazmat truck, 
and the hazard distance is more than 1 mile. Therefore, all residents in the 
emergency area need to be evacuated. The case study intersection is located 
in the middle of Westmont, Illinois, which means the worst case is that all 
residents living in Westmont are under the threat of hazardous materials. Table 
9-15 summarizes the basic census information of  Westmont. 

Figure 9-41  Metra BNSF line and Cass Avenue rail-highway crossing intersection (Source: Google Maps)
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Table 9-15  Census Data, Village of Westmont, IL 

According to the census and social economic data, 12.1% of residents in 
Westmont are below the poverty line. This portion would be the transit-
dependent population during evacuations. Moreover, children, older adults, 
persons with disabilities, and non-English speaking residents are all assumed 
to be special-needs populations. Emergency responders should assign proper 
assistants with special skills for these special-need populations to be involved 
to help with evacuation. 

BNSF Ridership 

If an emergency event occurs in the case study location, people who are using 
the related transit will be impacted directly. The Metra BNSF line runs east-west 
between two terminals, Chicago downtown area and Aurora. Metra Reports 
provided station level boarding and alighting ridership to help estimate the 
affected population, as shown in Tables 9-16 and 9-17. 

Data #/%
Population 24,576
Age and Gender 
       Under 5 6.8%
       Under 18 21.7%
       65 and over 16.8%
       Female 52.6%
Race 
       White only 74.8%
       Black or African American only 6.9%
       American Indian and Alaskan native only 0.0%
       Asian only 12.0%
       Native Hawaii and other Pacific Islanders only 0.0%
       Two or more races 2.5%
       Hispanic or Latino 13.9%
       White alone, not Hispanic or Latino 65.2%
Health
       With a disability, under age 65 6.6%
       Without health insurance, under age 65 11.0%
Income and Poverty
       Median household income (2017 $) $60,437
       Per capita income in past 12 months (in 2017 %) $36,458
       Persons in poverty 12.1%
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Table 9-16  BNSF Station-Level Ridership (AM) 

Route Station
AM Peak (Start of Service 9:15 am) Midday (9:16 AM–3:29 pm)

Inbound Outbound Inbound Outbound Inbound Outbound
On Off On Off On Off On Off

BNSF Aurora 1547 0 0 73 156 0 0 314
BNSF Route 59 5376 7 1 93 206 3 5 489
BNSF Naperville 3550 15 11 137 256 5 14 379
BNSF Lisle 1444 9 7 132 96 6 9 182
BNSF Belmont 1265 4 1 73 71 1 1 148
BNSF Main Street 1957 8 9 96 182 8 12 304
BNSF Fairview 347 3 5 7 42 2 10 37
BNSF Westmont 867 6 8 40 98 10 5 112
BNSF Clarendon Hills 701 2 2 8 51 0 5 92
BNSF West Hinsdale 366 0 0 0 9 0 0 19
BNSF Hinsdale 912 6 8 70 107 6 6 165
BNSF Highlands 197 0 0 2 0 0 0 23
BNSF West Springs 1011 4 7 14 70 3 3 141
BNSF Stone Ave. 923 4 1 6 83 6 2 113
BNSF LaGrange 1075 7 11 23 118 16 27 151
BNSF Congress Park 286 1 0 0 0 0 0 28
BNSF Brookfield 463 9 13 9 51 12 7 46
BNSF Hollywood 92 1 0 0 21 4 4 77
BNSF Riverside 400 21 4 4 50 3 16 77
BNSF Harlem 341 7 6 0 34 15 17 36
BNSF Berwyn 429 8 18 16 54 8 73 57
BNSF La Vergne 184 4 0 0 0 0 1 13
BNSF Cicero 80 10 35 1 5 23 23 10
BNSF Western Ave. 3 13 24 1 1 18 15 0
BNSF Halsted 21 55 4 0 0 9 65 3
BNSF Union 0 23633 630 0 0 1606 2696 0
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PACE Ridership 

GTFS data provide public transportation schedules and associated geographic 
information in detail. With the help of GTFS, stops/stations in the affected area 
can be determined and ridership estimated that need to be evacuated or shifted 
to other transit routes. In this study area, most riders tend to choose park-and-
ride or driving alone to the work place directly. PACE ridership is relatively low in 
Westmont, and the schedule is pretty flexible. Therefore, PACE passengers will 
not cause pressure on evacuation, but PACE buses could help with evacuation 
under the emergency circumstance. 

Table 9-17  BNSF Station-Level Ridership (PM) 

Route Station
PM Peak (3:30 PM–6:45 pm) Evening (End of Service 6:46 pm)

Inbound Outbound Outbound Inbound Outbound
On Off On Off On Off On Off

BNSF Aurora 167 0 0 1297 66 0 0 236
BNSF Route 59 144 6 8 44117 38 3 3 529
BNSF Naperville 198 21 8 3253 57 4 10 395
BNSF Lisle 175 7 28 1382 29 4 1 186
BNSF Belmont 91 3 32 1006 9 2 2 129
BNSF Main Street 136 9 32 1837 40 7 8 249
BNSF Fairview 34 8 12 321 6 2 2 52
BNSF Westmont 55 12 5 800 16 3 4 113
BNSF Clarendon Hills 36 7 0 608 10 4 1 108
BNSF West Hinsdale 0 0 1 264 0 0 0 21
BNSF Hinsdale 90 10 21 743 11 2 5 108
BNSF Highlands 5 0 0 167 0 0 1 15
BNSF West Springs 33 5 5 797 2 3 2 151
BNSF Stone Ave. 31 3 1 617 2 0 3 115
BNSF LaGrange 61 45 12 1035 26 4 10 171
BNSF Congress Park 0 0 4 218 0 0 0 22
BNSF Brookfield 19 9 10 442 4 0 5 97
BNSF Hollywood 2 3 1 97 0 0 0 9
BNSF Riverside 15 8 7 382 6 7 1 72
BNSF Harlem 12 11 7 243 0 6 4 59
BNSF Berwyn 21 16 26 497 8 7 3 73
BNSF La Vergne 0 0 1 165 0 0 1 21
BNSF Cicero 1 37 18 113 1 28 22 13
BNSF Western Ave. 0 23 25 6 0 16 1 0
BNSF Halsted 3 12 27 18 0 0 0 0
BNSF Union 0 1074 20434 0 0 229 2855 0
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Supply 
All available transit can be involved in the evacuation during emergency. For 
complete preparation, the capacity of each transit means, including CTA, PACE 
bus, and Metra’s BNSF line services, needs to be analyzed. Figure 9-42 shows 
possible alternative bus routes in an extended area. 

Figure 9-42  Alternative PACE bus routes 
 

Wind Data 
The Illinois State Water Survey, a research team supported by the University of 
Illinois Board of Trustees, published a study of average wind speed in Illinois. 
The highest average wind speed is in Spring, about April, which is 9.2 mph. Table 
9-19 summarizes the average wind speed in Illinois. However, according to the 
field data collected in recent years, wind speed can reach 30 mph occasionally 
and 20 mph frequently. The wind speed was assumed to be 20 mph towards the 
northern direction in this case study. 

Table 9-18  PACE Bus Supply 

Route Available Buses Capacity
661 2 ~ 35 seats, 9 standees
662 2 ~ 35 seats, 9 standees
665 1 ~ 35 seats, 9 standees
715 4 ~ 35 seats, 9 standees
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Case Study Consideration

Table 9-19  Historical Data on Wind Speed in Illinois 

Month/Season Wind Speed
January 8.7 
February 8.6 

March 9.1 
April 9.2 
May 7.6 
June 6.3 
July 5.6 

August 5.0 
September 5.6 

October 7.0 
November 8.4 
December 7.9 

Winter 8.4 
Spring 8.7 

Summer 5.7 
Fall 7.0 

Annual 7.4 

Figure 9-43  Hazmat failure location  
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Phase 1. Reporting of a Hazmat Emergency Event 

The case study assumes that a hazmat-related emergency event occurs in the 
busiest time period of a day, the AM peak. The emergency communication center 
receives calls reporting a truck crash at the Cass Avenue and Metra BNSF crossing 
intersection with hazard gas leakage. 911 dispatches the initial responders, 
including police, firefighters, and ambulances, to the accident location. 

Phase 2. Initial Response 

The emergency team roughly recognizes the color, odor, and type of the gas and 
establishes the initial clearance zone. Adjacent intersections will be blocked by 
police vehicles. Even though the initial buffer is relatively small, the operation 
of BNSF and PACE route 715 is interrupted. According to Metra ridership data, 
in the AM period, a majority of passengers are moving from the west to Union 
Station; therefore, almost all passengers on BNSF commuting rails need to 
choose alternative transit such as PACE buses. The number of passengers from 
the west is estimated to be 16,353, with 583 from the east in AM peak period. 
With PACE route 715 affected, multiple PACE routes as shown in Table 9-20 are 
available as alternatives. 

N-S Oriented PACE Route E-W Oriented PACE Route
462 301 
463 313 
465 322 
661 755 
662 826 
664 850 
665 851 
668 

855

669 
715 
821 
825 
834 
877 
888 
890 
895 

BNSF 

Table 9-20  Alternative Transit Options 
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Figure 9-44  Initial clearance  

Phase 3 Hazmat Spreading 

Additional traffic control is executed, and the hazardous materials start to 
spread to the residential area. This affects Metra train passengers as well as 
local residents in need of evacuation. At this time, the area is at risk and the 
number of impacted population need to be re-estimated. According to the 
new assessment, the emergency management team revises and implements 
a new evacuation strategy and considers if State or federal assistance is 
required. Residents affected in this phase are estimated to be 4,000, including 
12.1% of populations in poverty. 
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Route Pattern # of Trips
M-BNSF M-46f5dde94d610c28a64135c90f995da7 1
M-BNSF M-ad6e46c45599e833a42ccacf81202fc1 1
M-BNSF M-cc21bd70b91f2356278c8d196288566c 1
M-BNSF M-cc9350807394baf960f26d853b6e30d1 1
M-BNSF M-2472b7c521a15eee6719e54b82854bb5 1
M-BNSF M-901ec95959b7658792fcacccf25b46a1 2
M-BNSF M-bee454d3fe1aecb96980622ba3a3200e 1
M-BNSF M-f50d83684e564f492afed9df8eb1865f 1
M-BNSF M-f630c95184d3a6df4758366021aeb53f 2
M-BNSF M-70ab64c658b70a41f5d781c581d8cfec 3
M-BNSF M-7f99a2b89b3e56bede59e29a1c243a90 1
M-BNSF M-efbe3c637a501f20ac8f8be31d1852a8 2

P-661-200 P-16ba63c010fdb6951f5d35e8ec9fa36c 1
P-661-200 P-0addec4fb336c9cba8c03b7bb24e8719 1
P-662-200 P-860ab2eaf34fb72dcfb95d6388e1f717 2
P-662-200 P-e71da395ff8a4ef54c68160155d65be9 1
P-665-200 P-4fffba5c861e248e13de37c399ecee08 2

P-715-0 P-55de2ff6b193f418947ec7cfacd4b8b7 2
P-715-0 P-e3ba1f47a7698e3b37ac8a3515421114 2
P-715-0 P-8bc44f1fdf832930ff2fa1a68178fe2e 4
P-715-0 P-43e44ee82f7fc1f60aee4b19ec41e86e 3

Figure 9-45  Hazmat emergency affected area in Phase 3 

Table 9-21  Affected Transit Pattern in Phase 3 



FEDERAL TRANSIT ADMINISTRATION 	 257

SECTION  | 9

Phase 4. Final Impact 

In this phase, hazardous materials spread to the largest area possible. Out of 
the area, the density of the hazmat is too low to adversely affect human health 
and the environment. However, the emergency response team should closely 
monitor the weather condition and air quality to prepare for any unexpected 
secondary emergency. The affected area is estimated to be up to 2 square miles, 
and residents within the area are about 9,000, with around 1,100 below the 
poverty level. In the end, the reentry process of BNSF is planned, and media 
updates on the emergency evacuation progress need to be prepared and 
disseminated. 

Route Pattern # of Trips
M-BNSF M-46f5dde94d610c28a64135c90f995da7 1
M-BNSF M-ad6e46c45599e833a42ccacf81202fc1 1
M-BNSF M-cc21bd70b91f2356278c8d196288566c 1
M-BNSF M-cc9350807394baf960f26d853b6e30d1 1
M-BNSF M-8ae18881035e88223e354adcb91cc489 1
M-BNSF M-2472b7c521a15eee6719e54b82854bb5 1
M-BNSF M-901ec95959b7658792fcacccf25b46a1 2
M-BNSF M-bee454d3fe1aecb96980622ba3a3200e 1
M-BNSF M-f50d83684e564f492afed9df8eb1865f 1
M-BNSF M-f630c95184d3a6df4758366021aeb53f 2
M-BNSF M-70ab64c658b70a41f5d781c581d8cfec 3
M-BNSF M-7f99a2b89b3e56bede59e29a1c243a90 1
M-BNSF M-efbe3c637a501f20ac8f8be31d1852a8 2

P-661-200 P-16ba63c010fdb6951f5d35e8ec9fa36c 1
P-661-200 P-0addec4fb336c9cba8c03b7bb24e8719 1
P-662-200 P-860ab2eaf34fb72dcfb95d6388e1f717 2
P-662-200 P-e71da395ff8a4ef54c68160155d65be9 1
P-665-200 P-4fffba5c861e248e13de37c399ecee08 2

P-715-0 P-55de2ff6b193f418947ec7cfacd4b8b7 2
P-715-0 P-e3ba1f47a7698e3b37ac8a3515421114 2
P-715-0 P-8bc44f1fdf832930ff2fa1a68178fe2e 4
P-715-0 P-43e44ee82f7fc1f60aee4b19ec41e86e 3

Table 9-22  Affected Transit Pattern in Phase 4
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Figure 9-46  Hazmat emergency affected area in Phase 4 

Phase
Demand

Supply
Countermeasure (Bus Rerouting)

Residents Passengers
East-West North-South

Origin Destination Origin Destination
1 – –

~ 10 buses 
in oper-
ation, 30 
buses in 
garages 
nearby

– – – –

2 –

W-E 720

Fairview Clarendon 
Hills

Cass/ 
Irving

Cass/ Rich-
mond

E-W 195
N-S <100
S-N <50

3 500

W-E 1,136

Fairview Clarendon 
Hills

Cass/ 
Norfolk Cass/ 56th

E-W 173
N-S <100
S-N <50

4 550

W-E 1,568

Main W Hinsdale Cass/ Mel-
rose Cass/ 60th

E-W 162
N-S <100

S-N <50

Table 9-23  Summary of Four-Phase Hazmat Emergency Response Process 
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Review of Hazards Classification, 
Detection, Communication, and 
Mitigation Methods and Technologies10 
Hazard Classification and 
System Resilience 
Hazard Characteristics 
Cities and urban areas generally maintain extensive architectural structures, 
interconnected infrastructure systems, a high density of population, and 
concentrations of human activities. This makes them livable and attractive. 
However, it also puts them at high risk to all kinds of hazards such as floods, 
hurricanes, earthquakes, terrorist attacks, and so forth. As illustrated in Figure 
10 1, hazards can be largely classified into with-notice and no-notice categories. 
With-notice hazards refer to those that can be predicted based on data collected 
on a real-time basis; consequently, some counteractions can be prepared 
in advance. This type of hazard contains weather-related natural disasters. 
No-notice hazards refers to those that cannot be well predicted. This kind of 
hazards includes fires, power supply failures, nuclear events, and so forth. 

Figure 10-1  Typical hazard classifications

 10 Authored by Zongzhi Li, Yongdoo Lee, Yunseung Noh, Lu Wang, and Ji Zhang, IIT.
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With-Notice Hazards 
Flooding 
As cities and urban areas expand outwards to accommodate modern 
urbanization, ever-increasing population and inefficient decision-making often 
bring unexpected results in the form of unplanned development in floodplains 
and flood-prone areas. Global climate change is another critical fact perceived 
to have a significant impact on flood risk increases. The meteorological patterns 
movement associated with a warmer climate is also likely to increase risk. 

Climate change can contribute to flood risk increases in multiple ways. For 
example, global warming augments the rate of sea-level rise that will lead to 
more flood damage in coastal areas. It also changes local rainfall patterns that 
may cause more frequent and higher levels of flash floods from local rivers 
and other water bodies. Climate change may alter the frequency and duration 
of drought events that lead to groundwater extraction and land subsidence 
compounding the impact of sea-level rise. Further, climate change could result 
in more extreme weather conditions such as storms causing more frequent sea 
surges. The intensity of a flood event is measured by flood category. 

Fire 
Fires are one of the most severe hazards to anything flammable. Fire hazards 
can be classified into three types in terms of the location of occurrences—
Indoor, Urban, and Wildfire. The first two are discussed in this section. Indoor 
fires are mainly caused by overloaded electrical outlets or overworked 
extension cords. Nowadays, installations of indoor smoke detectors and fire 
alarms are mandatory. This minimizes indoor fire risk and stops an indoor fire 
from expanding to a large-scale urban fire hazard. Urban fire hazards are largely 
related to architectural buildings and transportation infrastructure. 

In recent decades, the rapid expansion of urban transportation systems and 
increases in shipping of hazardous materials such as flammable, spontaneously 
combustible, and poisonous materials have raised concerns about fires. This 

Table 10-1  Flood Categories 

Flood Category Description

Minor Minimal or no property damage, but possibly some public threat. 

Moderate
Some inundation of structures and roads near stream. Some 
evacuations of people and/or transfer of property to higher 
elevations 

Major Extensive inundation of structures and roads. Significant evacuations 
of people and/or transfer of property to higher elevations 

Record Flooding that equals or exceeds the highest stage or discharge at a 
given site during the period of record keeping 
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type of fire hazard is primarily caused by crashing of vehicles and burning 
of gasoline. Gasoline fires, referred to as hydrocarbon fires, are likely to be 
more severe than building fires due to a fast heating rate and a higher peak 
temperature. Currently, there is no well-known standard to measure fire hazard 
intensity. Normally, the location, time duration, property loss, and number of 
fatalities and injuries associated with a fire are factors used to describe fire 
hazards and analyze their impacts. 

Hurricane and Tornado 
Hurricanes are one of the costliest natural hazards in the southeast coastal 
area of the U.S., mostly near the Caribbean Sea. This kind of hazard occurs near 
the tropical zone and over warm waters in the Atlantic and Pacific. A hurricane 
always lasts for days and occurs around 10–15 times per year in the U.S. It 
always brings heavy wind, flooding, storm surge, rain, and tornadoes. Spatial 
coverage could have a diameter of hundreds of kilometers. Hurricanes are 
classified by the Saffir-Simpson Wind Scale into five categories. 

Category Wind Speed (mph) Types of Damages

1 74–95

Very dangerous winds causing some damages to 
well-constructed homes on roofs, shingles, vinyl 
siding, and gutters; snapping large tree branches 
and topping shallowly rooted trees; and exten-
sive damage to power lines and poles with multi-
day power outages 

96–110

Extremely dangerous winds causing extensive 
damage to well-constructed homes on roofs and 
sidings; snapping or uprooting many shallowly 
rooted trees with road blockage; near-total power 
loss with outages lasting several days or weeks 

3 111–129

Devastating damage severely damaging well-
built homes or removing roof decking and gable 
ends; snapping or uprooting many trees with 
road blockage; loss of electricity and water for 
days or weeks after storms 

4 130–156

Catastrophic damages to well-built framed 
homes with loss of most of the roof structure 
and/or some exterior walls; snapping or 
uprooting most trees and downing power poles 
with residential areas isolated; power outages 
lasting weeks to possibly months with most 
areas uninhabitable 

5 ≥157

Catastrophic damages to destroy a high percentage 
of framed homes with total roof failure and wall 
collapse; fallen trees and power poles isolating 
residential areas; power outages lasting for weeks 
to possibly months with most areas uninhabitable 

Table 10-2  Saffir-Simpson Wind Scale for Hurricane Hazard Measurement 
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Similar to a hurricane, a tornado brings very strong cyclonic winds, heavy rain, 
large hail, and strong cloud-to-ground lightning. However, the time duration 
of a tornado is always less than one hour. One tornado can have a diameter of 
hundreds of meters. The U.S. records about 1,200 tornadoes per year, which 
commonly occur in Spring and Fall when cold and warm fronts converge and 
can occur anywhere. The scale used for rating the strength of tornadoes is the 
Fujita (F) scale, developed in 1971. The Enhanced Fujita (EF) scale was unveiled 
by the U.S. National Weather Service on February 2, 2006. The EF Tornado Scale 
was put into use in the U.S. effective on February 1, 2007.

Scale Wind Speed 
(mph)

Frequency 
(%) Potential Damages

EF0 65–85 56.88

No reported damage in open fields or minor 
damages to homes with some roofs peeled off 
or some damage to gutters or siding; branches 
broken off trees; shallow-rooted trees pushed 
over 

EF1 86–110 31.07
Weak to moderate damage with roofs severely 
stripped; mobile homes overturned or badly 
damaged; loss of exterior doors; windows and 
other glass broken 

EF2 111–135 8.80

Considerable damage to well-constructed 
houses with roofs torn off; foundations 
of frame homes shifted; mobile homes 
completely destroyed; large trees snapped or 
uprooted; light-object missiles generated; cars 
lifted off ground 

EF3 136–165 2.51

Severe damage to entire stories of well-
constructed houses and large buildings such 
as shopping malls; trains overturned; trees 
debarked; heavy cars lifted off the ground and 
thrown; structures with weak foundations 
badly damaged 

EF4 166–200 0.66
Devastating or extreme damage to well-
constructed and whole frame houses; cars and 
other large objects thrown and small missiles 
generated 

EF5 > 200 0.08

Total destruction of buildings; level of strong-
framed, well-built houses; sweeping of 
foundations; critical damages to or severe 
deformations of steel-reinforced concrete 
structures; collapse of tall buildings; blowing 
away cars, trucks, and train cars 

Table 10-3  Enhanced Fujita Scale for Tornado Hazard Measurement 
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No-Notice Hazards 
Power Supply Failure 
The U.S. electric power grid is an interconnected network for electricity 
delivery from suppliers to end-use customers. Driven by changes in federal 
law, regulatory changes, and electric power infrastructure modernization, the 
grid is continuously evolving from a mainly patchwork system to a national 
interconnected system, transferring electrical power in the country. Although 
the U.S. electric grid has operated with a high degree of reliability in the history, 
many components of the electric grid system are vulnerable due to natural, 
operational, or manmade blackout events. It is possible power supply failure 
event comes any time. The intensity of a blackout event is measure using the 
time duration and spatial coverage along with the economic loss caused by the 
power outage. 

Hazardous Material Spills
Hazardous material spills can be categorized into two types by the spill 
location—on site and during transportation. This review focuses on the second 
type because it is more likely to affect the transportation system and the 
traveling public. Hazardous material spills during transportation could be 
mainly caused by vehicular crashes, pipe failures, and container failures. 

According to USDOT, a hazardous material is defined as any substance or 
material capable of causing harm to people, property, and the environment. 
Dependence on hazardous materials is the basis of running industrialized 
societies. At present, tens of thousands of hazardous materials are used in daily 
life. The United Nations sorts hazardous materials into nine classes based on 
their physical, chemical, and nuclear properties: explosives and pyrotechnics; 
gases; flammable and combustible liquids; flammable, combustible, and 
dangerous-when-wet solids; oxidizers and organic peroxides; poisonous and 
infectious materials; radioactive materials; acidic or basic corrosive materials; 
and miscellaneous dangerous goods, such as hazardous waste. 

Earthquake 
An earthquake is a natural phenomenon bringing fault rupture, ground shaking, 
ground displacement, liquefaction, and induced-landslide. Consequently, it 
could trigger more hazards such as flooding, tsunami, and nuclear events. 
The combined impact would be far more complicated. There are four different 
types of earthquakes—tectonic, volcanic, collapse, and explosion. A tectonic 
earthquake is one that occurs when the earth's crust breaks due to geological 
forces on rocks and adjoining plates that cause physical and chemical changes. 
A volcanic earthquake is any earthquake that results from tectonic forces 
that occur in conjunction with a volcanic activity. A collapse earthquake is a 
small earthquake in underground caverns and mines caused by seismic waves 



	 FEDERAL TRANSIT ADMINISTRATION 	 264

SECTION  | 10

produced from the explosion of rock on the surface. An explosion earthquake is 
resulted from detonation of a nuclear and/or chemical device. 

An earthquake is recorded and measured by recording seismic waves, which are 
the vibrations from the earthquake that travel through the earth. The influenced 
area varies from place to place. One large earthquake could destroy a small village 
in a short period, and a small earthquake will not affect anything. In general, 
the larger the earthquake, the more intense the shaking and the duration of the 
shaking. The instrument used to record seismic waves is called a seismograph 
and could greatly magnify and record these ground motions as a function of 
time. They could also catch the time, locations, and magnitude of an earthquake 
typically at periods of between 0.1 and 100 seconds. The Richter scale was 
developed in 1935 and is a mathematical tool to compare the size of earthquakes. 

Nuclear Event 
Nuclear accidents generally contain two types of hazards. One is radioactivity 
leakage in a nuclear power plant caused by equipment failure, human error 
committed during field operations, and other reasons. The direct consequences 
are radioactive emissions into atmosphere, soil contamination, and water 
effluence. Further, food and drinking water will be affected from a nuclear 
accident. 

The other type is nuclear attack using nuclear weapons. Compared to 
conventional chemical explosives such as gunpowder and TNT, nuclear 
weapons are significantly more compelling and capable of creating devastating 
effects that other common chemical explosives cannot create. Effects of a 
nuclear weapon attack are more complicated, which generally contain thermal 
pulse, blast, prompt radiation, electromagnetic effects, mass fire, and residual 
radiation. 

A severe nuclear event can devastate an area with a diameter of at least 10 
miles. Apart from instant massive destruction made by a nuclear event, the 
radioactive material contamination may last for years or even decades. The 
intensity of a nuclear event is measured using the International Nuclear Event 

Richter Scale Frequency Effects
2.5 or less 900,000 Usually not felt, but can be recorded by seismograph 

2.5–5.4 30,000 Often felt, but only causes minor damage 
5.5–6.0 500 Slight damage to buildings and other structures 
6.1–6.9 100 May cause a lot of damage in very populated areas 
7.0–7.9 20 Major earthquake. Serious damage 

≥ 8.0 0.3 Great earthquake. Can totally destroy communities near the epicenter 

Table 10-4  Richter Scale for Earthquake Hazard Measurement 
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Scale (INES) classified on a seven-level scale. An event classified from level 1 
to level 3 is considered an incident, and it becomes an accident when the level 
is greater than 3. Each one-level increase on the INES represents a 10-time 
increase in severity. 

Terrorist Attack 
Terrorism is not like natural or even other manmade hazards. To the extent that 
terrorist incidents might even resemble natural or technological disasters, the 
response could be very similar. A bridge or a building collapse, a dirty bomb 
detonation, a fire, an explosion, a power outage, and even a flood might result 
from terrorist actions. 

Because a terrorist attack could cause other types of hazard, there is no specific 
standard to measure the intensity of the general terrorist attack. Time duration, 
spatial coverage, intensity, casualty, and economic loss are general measures 
for all hazards triggered by terrorist attacks. 

Impact on Transportation System 
and Resilience 
Infrastructure 
Flooding 
Flooding with long-duration will deteriorate structural components of 
transportation infrastructure, including roads, bridges, and tunnels with high 
recovery cost. Depending on the form of reconstruction and characteristics 
of flooding, much infrastructure may survive a flood but will be damaged 
extensively by the corrosive effect of salinity and damping and be in need of 
substantial repairs and refurbishment. The infrastructure will be out of service 

INES Level Description

Level 1: Anomaly Public exposure in excess of annual limits, caused by stolen radioactive 
source, device, or transportation package 

Level 2: Incident Public exposure in excess of 10 mSv, worker’s exposure in excess of the 
statutory annual limits 

Level 3: Serious incident Near-accident at a nuclear power plant without safety provisions 

Level 4: Accident with local 
consequences 

Minor release of radioactive material with at least one death from 
radiation 

Level 5: Accident with 
wider consequences 

Limited release of radioactive material with at least several deaths from 
radiation 

Level 6: Serious accident Significant release of radioactive material 
Level 7: Major accident Major release of radiative material with widespread health effects 

Table 10-5  INES Scale for Nuclear Hazard Measurement 
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as long as it is located in the flood area. Indirect impacts in terms of loss of 
transportation network-wide mobility are significant, especially when the 
spatial coverage is large. 

Like roadway system, rail tracks and stations would be partially out of service 
after flooding. The impacts of flooding on underground subway systems can be 
devastating. Entire platforms, stations, and tracks and tunnels can be soaked 
for a long time. The time costs and labor needed for recovery are extremely 
high. The resilience of the transit system depends on the intensity of the 
flooding event. If the spatial coverage is small, the unimpacted transit service 
near the event area could be used as an alternative for travel if available. 

Signs, pavement markings, and crash cushions will not be affected much 
in terms of their quality loss caused by flooding. They will temporally lose 
function in a roadway that is no longer usable. Signals and lighting are different 
from other traffic control and safety hardware because their functions rely on 
electricity power supply, which is extremely vulnerable in the flood hazard. 

Fire 
Building fire hazards will not directly have any impact on infrastructure. 
However, transportation infrastructure fires may cause damage in different 
ways. Transportation infrastructure fires can lead to significant economic and 
public losses. Traffic damaged by fire is usually difficult to detour and affects the 
traffic mobility in the local area, especially on a highway. A severe fire may lead 
to permanent damage or even collapse of a bridge or tunnel. 

Generally, the spatial coverage of a fire is relatively small, but the impacted 
area varies from site to site. Rail service would be shut down if a track or 
station is on fire. If the fire hazard location is on a roadway network, bus transit 
service could detour if possible. If the fire hazard occurs on a major bridge 
or in a tunnel, system resilience will come to the minimum due to the lack 
of alternative bypasses. In an urban network, closing fire-affected roadway 
segments and using temporary traffic control measures could mitigate impacts. 
In this case, the unimpacted transit service near the event area could be used as 
an alternative mode to evacuate affected people and keep the transportation 
system running. 

Hurricane and Tornado 
Primary hurricane phenomena of concern are storm surge, extreme rainfall, 
extreme winds, tornadoes, and wind driven waves. The interaction of these 
phenomena with natural and built environments generates additional hazards, 
including coastal surge, inland rainfall, flooding, erosion, scour, rain-induced 
landslides, and flood borne and windborne debris. 
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In the short term, bridges, especially suspension bridges, can be easily damaged 
and even destroyed by high winds. The components made from steels suffer 
rust in the long run. The entire structure will deteriorate remarkably under 
a long time of erosion. The situation is slightly better in terms of roads and 
tunnels. For most of traffic signs, lighting poles, and signal heads, they might be 
blown away by winds instantly. Similarly, the erosion is another critical issue for 
all kinds of traffic control and safety hardware. 

Power Supply Failure 
If a power failure occurs in an urban area especially the densely populated 
central business district, the local street network quickly becomes full of 
vehicles and people. On the transportation supply side, one of the most 
immediate impacts is the instant failure of traffic signals that will reduce the 
system capacity. The increase in vehicular and passenger demand, coupled with 
system capacity reduction, will inevitably lead to severe traffic congestion and 
even deadlock of the urban street network. Roads and bridges will not be affect 
affected, but the loss of lighting supply inside tunnels will potentially reduce 
efficiency of evacuation. At nighttime or in rural areas, the impacts of power 
supply failures are minor. All electricity-driven equipment in transit system is 
out of service instantly. However, nowadays, transit systems are equipped with 
backup power sources. Therefore, the resilience of transit systems in this case is 
very high. 

Hazardous Material Spill 
The damages caused by hazardous material spill depends on the material type. 
Explosive, flammable, or combustible materials are harmful to transportation 
infrastructure if ignited. The effects could be as same as by fire or explosive 
hazards. Corrosive materials may directly corrode pavements, bridges, and rail 
tracks. Effects brought by other types of materials are minor. 

Earthquake 
The first main effect of a severe earthquake hazard is the ground shaking. 
Bridges, tunnels, and rail tracks can be damaged and even destroyed by the 
shaking itself or by the ground beneath them settling to a different level than 
it was before the earthquake. Generally, concrete and masonry structures 
are brittle and more susceptible to damages. Wood and steel structures are 
more flexible and less susceptible to damages. Likewise, transit stations and 
platforms can be damaged and even sink into the ground if soil liquefaction 
occurs. These facilities can also be damaged by strong surface waves making 
the ground heave and lurch. Any facilities in the path of these surface waves can 
lean or tip over from all movements. Traffic control and safety hardware may 
not be influenced directly from the moving ground, but they might be damaged 
by ground shaking and falling elements from buildings failure. In most cases, 
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the affected infrastructure needs to be rebuilt, and traffic has to re-route during 
the rebuilding process. 

Nuclear Event 
Normal nuclear material leakage will not bring damage to the transportation 
infrastructure directly. As for a nuclear attack, the damage to the infrastructure 
is catastrophic. The thermal pulse will melt everything near the center of 
explosion, and the blast created by the explosive could instantly inflict a city-
wide infrastructure failure. 

Vehicles 
Flooding 
Floods with a high depth can have devastating impacts on automobiles. Direct 
impacts are physical damages to vehicles. When cars encounter flooding, they 
may stay inside water for days or weeks while water saturates everything. This 
can severely compromise a vehicle’s interior, electronics, and powertrain. Salt 
water flooding, even light flooding, does the worst damage to cars. If the engine 
of a vehicle is soaked by water for a certain period, the vehicle is not capable of 
moving at that moment. After the flooding event, the repair cost is as high as the 
cost to rebuild a car in the worst case. Situations in terms of trucks and buses 
are slightly better because of their relative high profiles. 

Fire 
Any vehicle would be extremely vulnerable if it is on a fire unless a fire 
extinguish is used in the beginning to stop the fire. The most evident impacts on 
most vehicles involved are mobility losses due to the fire hazard ahead. Without 
an in-time response, the influenced area may be expanded over time and more 
vehicles will be involved, leading to traffic congestion. 

Hurricane and Tornado 
Operating vehicles in all kinds of travel modes are extremely dangerous in 
heavy winds. Passenger cars may be blown away even if they are not running. 
From this perspective, the transportation system has literally failed to function 
properly. The ground transportation system is mainly influenced by winds and 
the underground transportation system is constrained by flood. Trains, buses, 
and trucks are relatively heavier than passenger cars and are more likely to keep 
steady in strong winds. However, driving them as usual is still impossible. 

Power Supply Failure 
Power supply failures pose a minor effect on passenger cars. Some power-driven 
cars may not be able to charge during the blackout. However, most of the vehicles 
could still function properly. The same is true for buses and trucks. Although 
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some trains need electricity as power sources, temporary blackout is unlikely to 
bring any significant difference with available backup power. Conversely, a power 
outage with a long duration could cause failure of a train system. 

Hazardous Material Spill 
Damage to vehicles caused by hazardous material spills also depends on 
material type. Explosive, flammable, and combustible materials could explode 
or burn vehicles nearby, similar to fire hazards or explosive hazards. Corrosive 
materials could directly corrode vehicles if any contact occurs. 

Earthquake 
There is a possibility that some vehicles may sink into ground because of soil 
liquefaction. Vehicles are relatively safe in a clear space such as a suburban or 
rural area. In an urban area, the dense building layout could potentially damage 
or even bury vehicles with falling construction materials. 

Nuclear Event 
Normal radioactivity leakage does not affect vehicles directly. In a nuclear 
attack, damage to vehicles is catastrophic; the thermal pulse and blast created 
by the explosive could instantly destroy all vehicles nearby. 

Users/Non-users 
Flooding 
Floods worldwide pose a range of threats to human life, health, and well-being. 
On average, reported flood disasters directly kill over 8,000 people in each year. 
The amount and seriousness of impacts on the affected population will vary and 
can involve physical fatalities, injuries, or other health effects. The mental trauma 
of flooding, caused by witnessing deaths, injuries, and destruction of homes, 
can result in severe psychological effects in some individuals. Grief and material 
losses, as well as physical health problems, can lead to depression or anxiety. The 
most vulnerable members of the community can also be those worse affected—
the poor, older adults, and the youngest members of the community who often 
require special assistance. Research has found that children and older adults are 
more likely to die, particularly from drowning, than are adults. 

Fire 
Transportation infrastructure fire hazards are generally caused by crashing 
of vehicles and burning of gasoline. The impacts on drivers and passengers 
directly involved in this kind of hazard are devastating. Pedestrians and cyclists 
near crashes could be hurt by the explosion after the occurrences. Like flooding, 
mental trauma caused by witnessing the hazards also exists.  
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Hurricane and Tornado 
Any exposure to a hurricane and tornado is dangerous, even in an area where 
the hazard is not severe. People should stay in a hurricane shelter until the 
hazard severity level reduces to a safe level. Public awareness about general 
needs for evacuation and how to deal with a hazard is essential for efficient 
evacuation. Without this, public panic will become another impact brought by 
hurricane and tornado. 

Power Supply Failure 
Power supply failures place no threat to people’s health. However, a large-scale 
outage could create public panic. 

Hazardous Material Spill 
Hazardous materials could injure and kill people. The severity level of damages 
to human beings caused by hazardous materials also depends on material type. 
Explosive, flammable, and combustible materials could lead to fire hazards 
or explosive hazards. Corrosive material could directly corrode people if any 
contact occurs. The consequence of releasing poisonous and radioactive 
materials can have health concern (death, injury, or long-term effects due 
to exposure). Environment effects including soil contamination and water 
contamination could also influence human health in the long run. 

Earthquake 
Similar to vehicles, earthquakes pose little direct danger to people. However, 
the shaking caused by the seismic waves of an earthquake could damage 
buildings and cause them to collapse, and the collapse buildings could bury and 
kill people. 

Nuclear Event 
Human beings are vulnerable in nuclear events. A nuclear attack in populated 
areas would inflict massive loss of lives, and the residual radiation will affect 
human health in multiple ways. For instance, people could be affected through 
ingestion of contaminated food and water. Children and pregnant women are 
particularly sensitive to radioactive iodine, which can harm the thyroid. Tens 
of thousands of people could be unable or unwilling to return to their homes 
because of fears of contamination in the area. Public panic is another critical 
effect brought by nuclear events. Public confidence in government could be 
significantly lost if the effectiveness of government responds to the events is 
perceived to be low. 	  
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Summary 
To summarize the impact on transportation system brought by hazards and 
system resilience in general, Table 10-6 shows the hazard impact level and 
transportation system resilience level using scales of high (H), moderate (M), and 
low (L), respectively. 

 

 
Hazard Detection Technologies 
Advanced hazard detection technologies can prevent and ameliorate negative 
impacts of hazards. Hazard detection technologies include radar, satellite, 
camera surveillance, hazard material sensors, radioactive particle sensors, 
and electrical sensor, etc. The technologies can be divided into intrusive and 
non-intrusive detection depending on their method of installation. Intrusive 
methods collect data by embedding sensors in the infrastructure; non-
intrusive methods use external equipment and primarily active detection 
technologies. 

Hazards

Infrastructure

Vehicles Users
Roads Bridges Tunnels

Traffic control 
and safety 
hardware

Transit

Flooding H/L H/M H/L M/L H/L H/L H/L
Fire H/L HM H/L L/L M/M H/L H/M
Hurricane M/M H/L H/L H/L H/L H/L H/L
Tornado M/M H/L H/L H/L H/L H/L H/L
Power failure L/H L/H L/H L/H L/H L/H L/H
Hazardous material spill M/M L/H M/M L/H L/L M/L H/L
Earthquake H/M H/L H/L M/M H/M M/H M/L
Nuclear release L/H L/H L/H L/H L/H L/H H/L
Nuclear attack H/L H/L H/L H/L H/L H/L H/L

Table 10-6  Summary of Hazard Impact and System Resilience Levels 
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Flood Detection 
Flooding is water is flowing excessively onto land and then dry land is 
inundated, which is one of the most common natural disasters in both urban 
and rural areas. Flooding generally occurs when heavy rainfall causes a 
rapid rise of water in a short period of time. In addition, flooding can occur 
when ocean waves come on shore, dams or levees break, or snow melts 
quickly. Recently, the frequency and intensity of heavy rainstorms have 
been increasing because of global climate change. Type of storm, ground 
topography, and rainfall amount over an area as well as urban features and 
topography have an impact on flooding occurrence and its severity. Flooding 
can yield extensive damage to a highly-populated city and areas near rivers. 
Therefore, urban flooding modeling to detect inundation is necessary to set 
up measures and ameliorate risk. Radar, satellite, and rain gauges are used to 
detect heavy rainfalls. 

Radar 
Radar sensors are often used to graphically detect precipitation on a 
map because of their day-night capability regarding weather, as well as 
establishing flood relief management and improved urban flood inundation 
modeling. Radar provides sufficient resolution to show the location of heavy 
rainfall cores. The images and animations extracted from radar technology 
can be used for estimation of flooding extents and duration of rainfalls and 
for tracking movement and development of storms over time. In other words, 
radar technology provides specific information to help forecasters observe 
the intensity of an existing storm, predict how the storm begins to develop 
and where the location of flooding potentials over urban or rural areas is, and 
assess total rainfall accumulations for the duration of the event. For instance, 
the U.S. National Weather Service, which provides weather forecasting 

Hazard Type
Detection Technologies

Intrusive Non-Intrusive
Flooding Rain gauge Radar. satellite 

Fire Smoke detector, heat detector, flame 
detector, fire gas detector 

Vision sensor detector

Hurricane Satellite, ocean temperature detector, 
airborne

Power grid failure Passive detection Active detection 
Hazardous ma-
terial Active monitoring, passive monitoring

Earthquake Seismograph, electromagnetic mea-
surements Fluid pressure changes 

Nuclear material Gamma ray detector, neutron detector

Table 10-7  Classification of Hazard Detection Technologies 
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and warnings for the protection of lives, uses Weather Surveillance Radar 
(WSR)-88D radar to estimate the amount of precipitation and assess rainfall 
intensities for flooding warnings. However, a difficulty with using radar for 
urban flood detection includes that radar cannot reveal several ground areas 
visually because of radar layover or shadow caused by buildings and taller 
vegetation. 

Rain Gauge 
A rain gauge is a helpful tool to detect how much rain has fallen at a single 
geographic point and to warn timing of flash flooding. This method is the most 
accurate equipment for measuring rainfall. Therefore, a rain gauge is used as 
the most useful method for flooding detection in case of requiring accurate 
rainfall observation. Rain gauges are installed as automated reporting 
networks, which provide real-time data. A rain gauge is also used to determine 
the accuracy of a radar system by comparing the value estimated by radar 
technology to the actual rain gauge amount. The accuracy of estimation 
can decrease in an area where there are obstructions over them such as 
leaves, trees, or building roofs. There are two types of rain gauge—analog 
rain gauges, which typically consist of a clear acrylic or glass cylinder, and 
digital rain gauges, which are using a rain sensor for estimating and analyzing 
precipitation data. 

Satellite 
The use of satellites is a less direct and less accurate method for detecting 
flooding than radar or gauge technologies. However, this method shows high 
resolution and can be used over oceans, mountainous regions, or sparsely-
populated areas where other sources of rainfall data are not available. 
Therefore, satellites can be useful for detecting hazards in the area where 
heavy rainfall originates from smaller-scale rainfalls or is not detected from 
other technologies. 

Technology Advantages Disadvantages

Radar Shows high resolution, can be used 
in both day and night Cannot be used in the shadow area 

Rain gauge Most accurate rainfall observation Accuracy is affected by obstructions 
such as trees and building roofs 

Satellite Can be used in the area where other 
rainfall detectors cannot be used Indirect technology, less accurate 

Table 10-8  Advantages and Disadvantages of Flooding Detection Technologies  
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Fire Detection 
Technologies for fire detection can be categorized depending on detected 
sources. Particles produced by combustion, visible colors monitored by 
cameras, thermal energy, and visible light emitted by flames can be used as 
indicators to detect fires.

Smoke Detector 
A smoke detector, which typically is used in large commercial, industrial, and 
residential buildings as an indicator of fires, is a fire alarm device that responds 
to visible or invisible smoke particles produced by combustion. Methods of 
smoke detection are photoelectric (optical process) detection and ionization 
(physical process) detection. 

A photoelectric detector, also called an optical smoke detector, uses a light 
sensor and a light source containing infrared, visible, or ultraviolet light. 
When smoke particles enter the light path, some of the light is scattered and 
redirected into the light sensor, which triggers an alarm. This detector responds 
quickly to visible smoke particles from a smoldering fire while it is less sensitive 
at detecting particles generated in the flaming stage of fires or very hot fires.

An ionization smoke detector uses a radioactive source that generally emits 
alpha particles to ionize air and charges the air inside a small chamber. An 
electric current passes through the chamber because of a potential difference 
of voltage, and electrical circuit is completed by the charged air. When any 
smoke particles enter the chamber, they shield the radiation, which stops 
the electronic current from flowing and then an alarm is activated. Ionization 
detector is sensitive to small smoke associated with flaming or very hot fires 
because it can detect very small smoke particles and respond to them quickly. 
However, it reacts very slowly to the smoke associated with smoldering or low-
temperature fires. 

Figure 10-2  Classification of fire detection technologies 
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Vision Sensor Detector 
A vision sensor detector uses fire color pixels and movement of a fire. A 
luminance map is made based on characteristics that the shape of a fire can be 
constantly changed by wind or burning material, and fire regions generally have 
a higher luminance contrast than neighboring regions, which can be used to 
identify a fire. When a camera obtains the information on occurrence of a fire, 
subtle differences between consecutive frames can be analyzed and the fire can 
be detected. 

Heat Detector 
A heat detector is a device that detects the thermal energy of a fire. The 
technology is normally used in dirty environments or where dense smoke is 
produced. The thermal mass and conductivity of the element regulate the 
flow rate of heat into the element. The detector has a fixed temperature heat 
detector and rates rising heat. Heat detectors use thermistors that reduce 
resistance as the temperature rises. One thermistor is sealed and protected 
from the surrounding temperature, whereas the other is exposed. When 
temperature increases, the resistance in the revealed thermistor would be 
reduced, large current happens, and then alarm is generated. 

Flame Detector 
A flame detector is a device designed to respond to specific types of light such 
as ultraviolet (UV), infrared light, and visible light emitted by flames during 
combustion. If light is detected by a sensor, it triggers an alarm sound. Flame 
detectors can often detect smoke particles more quickly and accurately than a 
smoke or heat detector because of the technical method it uses to respond to 
the specific flame. 

Fire Gas Detector 
A fire gas detector uses the presence of carbon monoxide (CO) gas to detect 
fire particles. CO is a colorless, tasteless, and odorless compound generated 
by incomplete combustion of carbon-containing materials. Unlike smoke 
detectors, which detect the smoke particles produced by a flaming or 
smoldering fire, a fire gas detector measures CO levels by using a fuel-burning 
device and sends a signal to activate alarm. 

Hurricane Detection 
Satellite 
Satellites are used to detect hurricanes. This method enables to obtain visible 
images of clouds and the developing patterns of hurricanes. There are two 
major types of satellites for detecting hurricanes—geostationary operational 
environmental satellites, which observe weather above the same spot, and 
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polar-orbiting operational environmental satellites, which orbit the planet in 
above the poles. 

Ocean Temperature Detector 
The temperature of ocean surface waters is measured to monitor the 
occurrence of a hurricane and its potential intensity. For the measurement, 
rainfall-measuring microwave imagers and microwave scanning radiometers are 
used by a floating buoy which senses water temperature and radios and sends 
the information to detectors. 

Airborne Detector
Airplanes could fly into hurricanes to measure wind speeds and intensity. Radar 
and microwave technologies are used in aircraft to visually scan the water 
surface and forecast hurricanes by gathering snapshots about the potential 
hazard area. 

Power Grid Failure Detection 
Synchronization, the process of matching the voltage, frequency, and phase 
angle of a generator to a grid supply, is a method used to monitor power grid 
failure. In an alternating current electric power system, a generator should be 
synchronized with the grid prior to connection. If a generator is not with the 
same frequency as the network, power cannot be delivered to an electrical grid. 
Therefore, the technique of synchronization can be implemented to detect the 
failure of electronic supply. Active and passive methods are used for power grid 
failure detection. 

Active Detection 
Active detection uses the technique of sending a signal between a distributed 
generator and a grid to prove electrical supply in the grid network. The method 
is relatively effective and easy to implement. Methods include impedance 
measurement, active frequency drift (AFD), reactive power export error 
detection, slip mode frequency shift algorithm (SMS), active frequency drift 
with positive feedback (AFDPF), automatic phase-shift (APS), and adaptive logic 
phase shift (ALPS). 

Passive Detection 
Passive detection is a method to use transient events in the electrical grid for 
detection of a power grid failure. The method continuously monitors the system 
factors such as frequency, voltage, and harmonic distortion. Passive detection 
methods are rate of change of frequency, voltage unbalance, harmonic 
distortion, and rate of change of output power of a distributed generator (DG). 
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Hazardous Material Detection 
Once hazardous material spills out, it is difficult and takes a long time to restore 
to its former state, which also has a substantial impact on human in urban 
and rural areas and the environment. Therefore, timely detection of harmful 
material is important to ensure adequate functioning of the infrastructure and 
reduce damage. The detection methods of hazardous material spilled out have 
passive and active monitoring technologies. The major difference between 
active and passive monitoring techniques is whether illuminating sources are 
used. In other words, while active monitoring methods are using illuminating 
sources, passive monitoring methods do not use them. 

Figure 10-3  Classification of hazardous material detection technologies 

Active Monitoring 
Active monitoring uses a laser or broad band source as illuminating sources 
above hazard materials. The sources are illuminated, and the presence of 
detrimental sources is determined by detecting the absorption or scattering 
images caused by molecules over the potential danger surface. Methods for 
active monitoring include LIDAR systems and diode laser absorption, broad 
band absorption systems, evanescent sensing, and millimeter wave radar 
systems based on a used illuminating source. 
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Active Monitoring Illumination Source Description

LIDAR systems and diode 
laser absorption

Pulsed laser, diode 
laser 

Detector monitors scattered energy; 
laser can be affected by dust particles, 
which yields false alarms 

Broad band absorption 
systems Lamp 

Uses low cost lamps as source; 
multiple wavelengths are needed to 
reduce false alarms 

Evanescent sensing Optical fiber 

An optical fiber is buried along 
with pipe; change in pressure when 
hazardous material escapes causing 
a change in transmission character of 
optical fiber, which can be used as an 
indicator of leak 

Millimeter wave radar 
systems 

Millimeter wave radar 
(carbon dioxide laser) 

Can be used for monitoring materials 
containing methane; density difference 
between methane and air can be 
monitored to detect leakage 

Passive Monitoring 
Passive monitoring uses radiation produced by hazardous materials or 
background radiation as a source of detection instead of illuminating sources. 
The technology requires sensitive detectors and imagers to respond to a 
relatively weak radiation source. Passive monitoring methods include thermal 
imaging detection and multi-wavelength imaging detection. 

Earthquake Detection 
Earthquakes generate significant damage in a short time and can result in 
considerable loss of lives. Earthquake detection covers a wide range of time 
spans—long-term (tens to hundreds of years), mid-term (years to months), and 
short-term (days to hours). Earthquakes occur in certain regions intensively, 
which can be a milestone to identify the area where earthquakes are most 
likely to happen. They tend to recur along the same fault line in separate event 

Table 10-9  Characteristics of Active Monitoring Detection  

Type Advantage Disadvantage

Active  
monitoring

Can be used on moving vehicles, 
aircraft or on location; able to monitor 
over an extended range and without 
temperature differences; high spatial 
resolution and sensitivity 

High incidences of false alarm; skilled 
operators are required; cannot be 
used for unsupervised monitoring 
because of safety issues of using 
powerful lasers 

Passive 
monitoring

Long sections can be monitored; can 
be used from ground, vehicle, aircraft, 
and satellite platforms; remote moni-
toring is possible 

Infrared arrays are very expensive; 
requires very sensitive and expensive 
imagers and detectors 

Table 10-10  Advantages and Disadvantages of Hazardous Material Detection Technologies 
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and have not regular cycle. Moreover, an earthquake can yield a series of other 
earthquakes along a fault line. 

Seismograph 
A seismograph is an instrument commonly used to detect ground vibration 
generated by earthquakes. It can determine where an earthquake has happened 
(location), the amount of energy released (magnitude), and how deep the 
earthquake is (depth) by recording seismic wave. A seismograph consists of 
a frame and a mass. If a seismic activity occurs, the frame vibrates and the 
difference between the frame and mass is recorded on a seismograph, which can 
be used to calculate ground motion. It is deployed at the solid surface and used on 
land. However, they are not effective for fault measurements in marine areas. 

Electromagnetic Measurement 
Radiation is emitted prior to the occurrence of an earthquake, and 
when a deformation in the crust occurs because of ground motion, the 
electrical and magnetic properties of rock can be changed. Therefore, 
magnetometers deployed in rocks are used to detect and measure the 
changes in the electromagnetic field. Moreover, satellites can be used to detect 
electromagnetic radiation field change and infrared radiation emitted prior to 
earthquakes. 

Fluid Pressure Changes 
When crusts are deformed in a short time period due to an earthquake, the 
height of the groundwater table can be changed. Therefore, changes in ground 
water levels can be used as an indicator to detect an earthquake. 

Nuclear Event Detection 
Nuclear materials such as dirty bombs or radioactive materials contain highly-
enriched uranium and plutonium. They emit many radiation, especially gamma 
rays (high-energy photons) and neutrons. Therefore, they are used as the main 
detected radioactive materials to sense nuclear materials because of a feature 
that they can readily penetrate most materials. When gamma rays or x-rays 
can be beamed into nuclear materials, fission can be generated and causes 
emission of neutrons and gamma rays, which can be sensed to distinguish the 
nuclear materials. 

Gamma Ray Detector 
A gamma-ray detector uses electrical energy to measure nuclear materials. 
Therefore, specialized electronics are needed to turn a gamma ray emitted from 
the nuclear material into electrical energy. There are two methods to convert to 
electrical energy—scintillator material such as PVT and use of a semiconductor 
material such as HPGe. When a gamma ray interacts with these materials, 
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it generates an electrical signal, which can be used as an indicator to detect 
nuclear materials. 

Neutron Detector 
This technology uses charged particle converted from neutron energy. The 
most common detector is a gas-filled proportional counter (tube of helium-3 
gas). When fission neutrons pass through the tube, energetic charged particles 
are generated and identify nuclear materials. The detector has a high detection 
probability and efficiency. Other types of neutron detectors are high thermal-
neutron reaction detector and bubble detector. 

Summary 
Data on hazard detection can be collected by sensors deployed in infrastructure 
or non-intrusive technologies can be used to detect hazards. Major detection 
technologies include radar, satellite, advanced camera surveillance, hazard 
material sensors, radioactive particle sensors, and electrical sensor, and so 
forth. 

Rain gauges, radar, and satellites are typically employed to collect data that 
could be used to forecast flooding. Satellites and airborne or temperature 
sensor technologies are used to detect hurricanes in advance. Seismographs 
on land or magnetometers in rocks are deployed to detect seismic activities. 
Technologies detecting thermal energy, smoke, flame, and gas particles emitted 
from combustion or vision sensor are used for fire detection, and gamma rays 
or neutrons are detected to sense nuclear materials which can be a risk of dirty 
bombs or radioactive terror. The methods of synchronization and detection 
technologies for illuminating sources or radiation are used for detecting power 
grid supply failures and hazardous materials, respectively. Improved detection 
technologies help ameliorate adverse impacts of hazards and prevent severe 
damages. Since these technologies have their advantages and disadvantages, it 
is required to select appropriate technologies for hazard detection. 

Sensor Advantage Disadvantage

Gamma  ray 
detector 

Relatively low cost units for survey; 
less time-consuming process; 
portable detector for field use 

High rates of false alarms; less sensitive 
to nuclear material; low detector 
efficiency 

Neutron 
detector 

More effective for isolating Plutonium 
and highly Enriched Uranium 
materials; lower false alarm rates; can 
be made in any size and shape 

More expensive to use than gamma ray 
technology; requires nuclear reactor 

Table 10-11  Advantages and Disadvantages of Hazardous Material Detection Technologies 
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Communication Technologies 
Efficient communication technologies are important for evacuation from 
hazards, such as flooding, fires, and other events with notice. Shadow 
phenomena occur if ineffective communication for the disaster events is made. 
Shadow evacuees, people who do not have appropriate information about a 
disaster event and decide to evacuate without instruction, can cause traffic 
congestion and make the entire process of evacuation from the hazard area 
more complicated. As a result, overall evacuation can be delayed and people 
can be killed or injured unnecessarily. 

Variable Message Signs 
Variable message signs (VMS) are large electronic signs used to display traveler 
information. Their use has been increasing, as roadway users want more 
information about traffic conditions, and transportation agencies know how 
important this information is. Hence, it is possible to see the growing trend 
of VMS installation. In the past, VMS were used for displaying travel times 
and posting safety messages around holidays or other events; now, VMS 
continuously inform about travel times, safety messages, and events that can 
influence traffic conditions. Normally, public service announcements (PSAs) and 
safety messages are from the state level, whereas information on travel time, 
crashes, and construction activities is from the local level. 

VMS are also used for contraflow operations and are deployed just before a key 
decisionmaking point outside of event area. They help drivers use appropriate 
travel lanes for expected trips. When roadway closure or route diversion is 
required for an evacuation, VMS and portable variable message signs (PVMS) 
provide information to users. During the disaster event, VMS display evacuation 
traffic, route, shelter, and fuel availability. 

VMS and PVMS can be used not only for emergency travel information but also 
for future evacuation situations. Four different information stages exist where 
drivers may desire different types of information to make them feel comfortable 
with their travel decisions—all noticeable disasters such as flooding; a 
threatened area determined before a formal evacuation order being called; 
after the issuance of a formal evacuation order; and no longer safe to start to 
evacuate, such as within a few hours of expected landfall within the area. 

Highway Advisory Radio 
Highway advisory radio (HAR) stations are licensed low-power amplitude 
modulation (AM) radio stations. They are managed and operated by DOTs, 
airports, local governments, colleges, parks, events, and destinations. 
Information about travel and situations of imminent danger and emergencies 
are broadcasted. In emergency evacuation situations, such as an accident 
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near chemical and nuclear facilities, these radio stations have permission to 
exceed normal power levels for emergency operations. To prevent music from 
being played on a low power AM station, the audio of this radio station needs 
to pass through an audio low-pass filter that rolls off frequencies above 3 kHz. 
The content of the station is defined as non–commercial voice information and 
offers information about traffic hazards and travel advisories, traffic and road 
conditions, directions, availability of lodging, rest stops and service stations, 
and descriptions of local points. It is not allowed to identify the commercial 
name of any business whose service may be available within or outside the 
coverage area of a travelers' information station. HAR units are used when there 
is a need to provide extensive roadway information to motorists, such as chain 
control or adverse weather conditions. 

Smartphone Applications 
By using mobile smartphones, more successful evacuation of people in a 
disaster event area can be made and an easier evacuation process can be 
expected because users can be informed and updated where and how to 
reach a shelter or appropriate locations. These applications use interactive 
maps for the evacuation plan and monitor people in the affected area. During 
an emergency situation, it is possible to send personalized messages and 
information on evacuation routes. 

USDOE’s Lantern Live 
Smartphone applications for emergency preparedness have become more 
useful. From this platform, it is possible keeping emergency preparedness 
notification alerts readily available to the users. The U.S. Department of Energy 
(DOE) released a new smartphone preparedness app called Lantern Live that 
can guide users to quickly find and share critical information about nearby 
gas stations and power outages during energy emergencies. This app allows 
consumers to report operational status of local gas stations, find fuel, look up 
local utility power outage maps, and access useful disaster tips. The USDOE 
plans to adopt standardized social media hashtags for updating the apps likely 
to use the crowd-source information on the status of gas stations. 

FEMA 
A smartphone app from FEMA helps get alerts from the National Weather 
Service. By using this app, it is possible to receive severe weather information 
for up to five locations across the U.S. and can provide information about how 
to stay safe. In addition, a disaster reporter allows uploading of photos and 
sharing information on damage and recovery efforts. Another function of this 
app is maps of disaster resources that locate and receive driving directions to 
open shelters and disaster recovery centers. Users also can apply for federal 
disaster assistance through this smartphone app and can save a custom list 
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of items in personal emergency kits and shelters in case of an emergency and 
can have information to learn how to stay safe before, during, and after various 
types of hazards. 

Ready NYC and Ready TN 
The Ready NYC app encourages the public to set an emergency plan before 
a disaster based on the Ready New York City campaign. A main function of 
this smartphone app contains tips and information about what to do during 
emergencies and alerts feed from New York City's official source for information 
about emergency events and important city services. Ready TN serves 
situational awareness before, during, and after emergencies in Tennessee and 
individual preparedness at the community level. 

Vehicle-to-Vehicle Communication 
The application of vehicle-to-vehicle (V2V) communication is a system 
designed to transmit basic safety information between vehicles to facilitate 
warnings to drivers regarding impending events. USDOT and National Highway 
Traffic Safety Administration (NHTSA) have been conducting research on this 
technology for more than a decade. V2V communications can warn users 
about impending danger. Messages about speed of a vehicle, heading, brake 
status, and other information are transmitted through on-board short-range 
radio communication devices. Different from sensors, cameras, or radar, 
V2V has longer detection distance and the ability to sense around corners or 
through other vehicles helping V2V-equipped vehicles perceive. As a result, V2V 
equipped vehicles can detect threats sooner than another device can and warn 
their drivers accordingly. NHTSA has researched how various levels of vehicle 
automation will play an important role in reducing crashes and how on-board 
systems may someday work cooperatively with V2V technology. 

Web/Social Media 
This strategy involves using Web sites and information kiosks in public areas to 
disseminate information about incidents. 

Notify NYC 
New York City informs about emergency events and important city services 
to the public through Notify NYC. One of the purposes of this website is to 
make the public aware of emergencies and other planned incidents in New 
York City by attempting to provide accurate and timely information under 
emergency circumstances with high reliability. To use this service, users are 
required to register with a valid New York City address and can select the types 
of notification, such as short message service (SMS) and phone through a 
registered phone number. 
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Notification is provided 24 hours per day and 7 days per week, and emergency 
activities in the city are monitored by the Watch Command team operated 
by the Office of Emergency Management. Radio, computer, 911 dispatches, 
and federal, state, and local agencies monitors for incidents that affect the 
city. Once an emergency is identified as an event that can affect many New 
Yorkers, Watch Command provides information to the public through Notify 
NYC. Messages can be received related to emergency alerts, significant events, 
major mass transit disruptions, major traffic disruptions, public health, school 
notification, waterbody advisories, emergency parking suspension, and missing 
person notifications. 

Virtual Joint Planning Office 
A Virtual Joint Planning Office (V-JPO) is a crucial joint information system. From 
this office, public information officers in various locations can post and access 
information that is trustable and current from online. It can share information 
before a physical joint information center (JIC) has been established. Through 
a V-JPO, interaction among incident sites can be made, and consistent and 
timely information can be sent for those who need information. A V-JPO collects 
information from many different channels, and assembles them as one after 
verification. Many state, county, and city agencies are involved and contribute 
information through this system. Authorities can deliver critical information 
from the affected areas to JPO staff for assessment and potential message 
development and distribution during an emergency or disaster. The Emergency 
Management Office of the Communications Director or delegated authority may 
then place selected information from a V-JPO to an external Website for the 
public to complement information disseminated through media. 

Summary 
As part of the hazard emergency management decision process, data collected 
on hazard detection needs to be transmitted and processed for analysis and 
effective means developed for impacts mitigation. Communication is key to the 
success implementation of impacts mitigation measures. This section provides 
a thorough of various communication technologies, as summarized in Table 
10-12.	  



FEDERAL TRANSIT ADMINISTRATION 	 285

SECTION  | 10

Evacuation Strategies 
Identification 
Hazard Categorization 
Once there is a potential hazard, the first urgent action is to identify the hazard 
category and the potential severity. Hazards are generally divided into with-
notice and no-notice, depending on if they are predictable. With-notice and 
no-notice hazards have different evacuation strategies. No-notice emergency 
evacuation is much more difficult than with-notice incident evacuation because 
of the pressure of time or no time for action. For this reason, emergency plans 
are always prepared by emergency management agencies, with evacuation 

Table 10-12  Summary of Communication Technologies and Characteristics 

Communication 
Technologies Description Advantages Disadvantages

Variable message 
sign (VMS) 

Permanent or portable 
variable message signs to 
provide information about 
incidents to users

• Provision of traveler 
information to road users 

• Information provided to 
affected drivers 

• Widely used with
Transportation Management 
Plans (TMP) 

• Limitation of message 
length 

• Cannot inform complicated
messages 

• Cannot reach travelers 
outside immediate vicinity
of sign 

Advisory radio Low-powered AM or 
frequency modulation (FM) 
radio system to provide users 
with incident information  

• Information providers can 
provide more detailed
messages 

• Wider coverage to inform 
travelers in area 

• Users must tune to radio 
station 

• Signing needed for users to 
get a message available 

Smartphone app Incident alerts distributed 
through SMS or email 

• Possible to send to travelers 
widely 

• Easy to deploy 
• Many urban areas have 

systems already in place 

• Users required to subscribe 
to service 

• Requires staff to manage 
system 

Vehicle-to- 
vehicle (V2V) 
communication 

Network between vehicles 
and roadside units through 
dedicated short range 
communication

• More intuitive and direct
communication

• Faster notification 

• Hard to apply to old
vehicles 

• Hacking and privacy issues
• Technical difficulties to

handle many vehicles in
metropolitan area 

Website Websites or social media 
to disseminate incident 
information 

• Potential to reach travelers 
before departing trip 

• Can influence mode choice,
routing, and departure time 
choices 

• Cannot reach drivers 
already in area of hazard 

• Requires integration with 
other systems 

Virtual Joint 
Planning Office 

Help for responding public 
officers to post and access 
latest collaboration

• Faster decision-making
• Possible to process 

information faster 
• Standard of verified 

information required

• Bypass normal command 
channels 

• Information overload 
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routes and shelter locations predesigned. If the designated transportation 
network and emergency shelters are not destroyed during the disaster, they will 
be the used for evacuation purposes. That is why a well-established evacuation 
planning is crucial for emergency management. Advance planning is required 
to be updated and modified according to tabletop drill outcomes and changes 
in real-world conditions. A reliable communication system is another essential 
component to ensure the plan can be implemented timely. 

Impact Assessment 
For different types of hazards, impacts vary considerably. Even for the same 
type of hazards, the range, time duration, and intensity will be different. This will 
lead to varying consequences. How the hazard will impact the transportation 
infrastructure, vehicles, and users/non-users requires careful evaluation. 

Figure 10-4  Hazard impacts assessment process  

The objective of impacts assessment is help an agency know the hazards better. 
Historical events analysis, scientific analysis report, and expert experiences can 
provide critical information. For example, the Security Advisory System used 
by the U.S. Department of Homeland Security (DHS) is a color-coded terrorism 
threat advisory scale. Different colors represent different level of threats and 
will trigger different levels specific actions by local governments and federal 
agencies. Another example is a color-coded warning system used by the U.S. 
Forest Service to inform the public about the level of wildfire hazards. 

In the context of transit-based evacuation, hazard and risk assessment identifies 
the most vulnerable components and how they impact passengers and the 
transit system. Optimal operating conditions ensure better service during an 
evacuation. For instance, a transit threat condition model was developed by 
FTA to supplement the existing Homeland Security Advisory System (HSAS) 
Threat Condition model. It uses five colors from green to red to indicate the 
level of hazard from low to severe. Black indicates an attack is underway against 
a specific transit agency or within the agency’s immediate geographic area. 
Purple indicates the recovery of transit service after an attack. For each level of 
emergency management agency, FTA provides a guide to adopt corresponding 
measures, recommends transit protective measures, including refining and 
exercising preplanned protective measures to ensure personnel receive proper 
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training on the HSAS, and develops and implements hardware, software, and 
communications security for computer-based emergency operations. 

Response 
Agency Coordination 
Prior to the painful lessons of Hurricane Katrina, a transit authority was 
considered as the first responding entity for a transit-based evacuation. 
However, thousands of transit-dependent people were not able to be moved 
out of the affected area effectively. Post-event evaluation revealed that transit is 
highly depended upon by traditional first responder organizations to help with 
emergency response planning and implementation. The connection between 
transit agencies and first responders is essential to improve evacuation 
efficiency. 

Further, it is common that a disaster caused by a hazard affects a specific area 
with multiple jurisdictions involved. Coordination and corporation are highly 
needed as part of evacuation planning and implementation to protect lives 
and properties. Poor coordination across jurisdictions will slow the response 
and deem the evacuation plan to be inefficient, so available resources cannot 
be used efficiently. Mutual aid agreements ensure that jurisdictions provide or 
support each other during the emergency. Therefore, essential resources for 
public transportation evacuation, such as buses, commuters, or skilled drivers, 
can be shared to save lives and properties. 

Transportation Supply Strategies 
Emergency Traffic Signal Timing Plans 

Traffic signal timing is a technique to determine optimal right-of-way (ROW) 
plans by selecting appropriate values for traffic signal timing parameters. 
Essential parameters include but are not limited to cycle length, number of 
phases, green splits, and offsets between adjacent intersections. Optimized 
and effective signal timing plans ensure the flexibility of traffic flow and are 
consistent with traffic needs for all approaches and minimization of total delays, 
fuel consumption, and intersection-related vehicle stop-and-go conditions. In 
case of an evacuation, time is of essence—reducing time will save more lives. 

Central to evacuation is sending more evacuees to safe places as quickly as 
possible. Transit vehicles can play a key role owing to high passenger capacities. 
For efficient transit operations, bus signal priority (BSP) or transit signal priority 
(TSP) techniques can be effective means of evacuation to transport more people 
out of an affected area, helping to reduce or eliminate dwell time at a signalized 
intersections by extending the green interval or shortening the red interval of 
the phase designated to alternative movements. As such, transit travel time is 
reduced and corresponding efficiency is improved. Transportation agencies, 
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evacuation planners, and emergency responders should carefully assess the 
impacts and benefits of BSP or TSP to support efficient evacuation in a holistic 
manner. 

Traffic-Crossing Conflict Minimization 

Conflict points refer to the points that roadway users may cross, diverge 
or merge with other roadway users at an intersection. Drivers are likely to 
make mistakes due to misperception, and sometimes vehicle crashes may 
be triggered by movement conflicts. Figure 10-5 shows conflicts at a normal 
intersection. Without signalized control, there are 32 conflict points at an 
intersection, including 16 crossing points, 8 margining points, and 8 diverging 
points. If bicycles and pedestrians are considered, the number will raise to 48. 

Figure 10-5  Conflict points at intersection   

There are several ways to reduce conflict points. Common strategies include 
improving driveway geometrical design, relocating, consolidating, and 
eliminating driveways, adopting protected left-turn signals, using left-turn 
prohibition, and so on. During the evacuation process, normal signalized control 
is not enough. Additional traffic control measures are required to minimize the 
conflict points. Typical methods are shown in Figure 10-6.

Figure 10-6  Conflict-point reduction strategy   
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Traffic Condition Monitoring 

Modern technologies such as intelligent transportation systems (ITS) are crucial 
supplemental aids. ITS installations are advanced applications to enable users to 
be better informed and understand the real-time traffic situation to make a trip 
faster and safer. During evacuation, ITS will help emergency evacuation managers 
monitor traffic conditions, make coordination between the supply and demand 
sides, disseminate traffic condition information to evacuees and other road users 
to guide them choosing the optimal ways out of the affected area. 

Contraflow 

Contraflow is a practical strategy to make full use of available capacity. During 
an evacuation, inbound and outbound traffic needs are significantly imbalanced. 
The majority of or all inbound traffic lanes can be converted to outbound lanes. 
Sometimes, one or two inbound lanes are required for emergency responding 
vehicles to reach evacuation site for traffic management. If a contraflow 
strategy is implemented, outbound capacities for arterials and freeways will be 
significantly increased. Freeway contraflow is more recommended because of 
high design standards with limited access points and signalized control. 

The most essential element of a contraflow plan is to identify the appropriate 
start/end points and corresponding traffic control strategies since congestion 
is very likely to happen at these points, which will reduce the effectiveness of 
contraflow strategy. Therefore, it is highly recommended that contraflow should 
be considered at the planning, programming, and design stages, and special 
consideration is suggested for potential start and end points of contraflow. 
Additional signs and traffic control plans should be prepared, which include 
“Evacuation Route” signs, median-crossovers, access control gates/ railroad 
crossing barriers, and start/ end points strategies. 

Figure 10-7  Contraflow Alternative 1
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Figure 10-8  Contraflow Alternative 2 

Work Zone Removal 

For traffic safety, work zones should be removed during evacuation if possible to 
maximize roadway capacity. Without considering legal issues with contractors, 
careful assessment of traffic safety is required. If an unfinished work zone is 
removed, there is potential to endanger traffic. Drivers willing to go through a 
work zone or change lanes or routes may be affected.

Shoulder Use 

Temporary shoulder use, also referred to hard shoulder running, is considered 
if traffic volume is relatively high. By allowing vehicles to use paved shoulders, 
it is possible to improve the roadway level of service. In Netherlands, Germany, 
Great Britain, and other European countries, temporary shoulder use is applied 
as a management strategy to ease traffic congestion. For paved shoulder users, 
the speed limit maybe not the same as normal lane users for safety reason. 
Shoulder lanes can provide extra capacity during times of evacuation and 
congestion. The essential problem for an agency is to determine the location of 
start and end points. Special traffic facilities and signs are required to indicate 
the evacuees that the paved shoulders are temporarily permitted. 

Travel Demand Management Strategies 
If an emergency situation occurs, travel demand will increase expeditiously and 
could quickly exceed the design capacity of road network. Demand reduction 
become an effective strategy that is a desirable to be considered. 
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Phased Evacuation Plan 

Phased evacuation is a systematic evacuation process in different affected 
areas that is guided or suggested to be separated as a controlled sequence of 
evacuation phases. The priority can be the level of risk, and parts under greatest 
risk should be evacuated firstly. Therefore, evacuation is implemented as a 
series of successive, geographically smaller evacuations. In this way, affected 
people are suggested to evacuate at different time ranges at different locations 
so the traffic pressure and “peak hour” scenario from the demand side is 
mitigated. The major challenge of a phased evacuation plan is whether the 
affected people are willing to follow the agency’s recommendations, especially 
under the pressure of time during evacuation. Also, from the perspective of 
human nature, phased evacuation should be voluntary; mandatory is not 
recommended. Therefore, disseminating accurate disaster information, making 
an acceptable phased evacuation plan, and avoiding panic evacuation are 
crucial tasks for evacuation management. 

Special-Needs Populations 

The U.S. GAO conducted a study focusing on the issue of preparedness 
of evacuation for special-needs populations, specifically transportation-
disadvantaged populations. These populations vary widely in definition, 
not only populations with mobility issues but also potential users of transit 
in an emergency evacuation, such as populations without private vehicles 
and vulnerable populations that cannot access private vehicles during 
the emergency. A special plan should be prepared for the transportation-
disadvantaged population, and corresponding training and exercises are 
required as well. Although challenging, several measures are proposed to make 
it operational to serve special-needs populations in an emergency evacuation. 
Here we list several practical strategies based on National Consortium on the 
Coordination of Human Services. 

Identification and Location of Special-Needs Populations 

• Historical demographic profile
• Transportation-disadvantaged population voluntary registration
• Special-needs population service organization records

In-Advance Planning 

• Pre-designed transit evacuation routes for special-need populations
• Provision of information about evacuation routes, shelter locations, and

stops
• Human service agencies and volunteers to assist special-need populations
• Specially-designed training and drill exercises for special-need populations
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Communication 

• Establishing accessible communication devices and formats for special-
need populations

• Providing communications to special-needs populations that service
agencies can provide assistance

• Special warning massages and guidance for special-needs populations

Transportation Assistance 

• Matching potential evacuation needs with available transit resources
• Encouraging carpools to help special-need populations
• Equipping transit with appropriate facilities for special-needs populations
• Cooperation among transit providers

Evacuation Information Dissemination 

Timely and accurate information on a disaster triggered by a hazard is valuable 
during evacuation. Information dissemination can be provided by internet, 
message, email, or broadcast radio. Recommended evacuation routes should 
be provided as well as road condition, weather information, and suggested 
evacuation timing for specific areas should also be included. 

Long-Term Response Strategies 
Effective and close coordination among multiple departments and jurisdictions 
is required to achieve success during an emergency evacuation. Training and 
preparation in advance will shorten the response time for agencies and help 
evacuees take actions effectively. Recommended preparation activities are as 
follows: 

• Regular training
• Mutual aid coordination agreements
• Advance data collection
• Weekly input and push of information to emergency managers
• Establishing evacuation response coordinating team
• Continued deployment of infrastructure to support evacuation
• Developing jurisdictional-specific evacuation plans

Accurate advance data guarantees developing a comprehensive and practical 
evacuation plan for an emergency situation. Related data should be collected, 
analyzed, and updated routinely. Useful data include those related to 
socioeconomic characteristics, census surveys, transit-dependent populations, 
and transit system resources. A short list of typical data for evacuation plan 
development includes the following: 
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• Census data
– Size of population
– Population density in specific area
– Transit-dependent and potential transit-dependent population

• Socioeconomic data
– Special-needs people (persons with disabilities, older adults)
– Low-income people (potential transit-dependent population)
– Private vehicles per capita for each income level

• Geographic and political data
– Jurisdictional boundaries
– Size and capacity of transportation network
– Potential factors to reduce capacity
– Principal jurisdictions

• Transit system data
– Size of transit system
– Service coverage
– Transit mode composition
– Capacity of transits
– Available transit resource during evacuation
– Transportation and transit control techniques and devices

These data are typically required but maybe not sufficient. A useful tool to 
capture, store, manipulate, analyze, manage, and present large datasets is 
a Geographic Information System (GIS), which makes it easy to observe the 
disaster area and shelter locations and plan for transit evacuation routes. 

Prevention/Mitigation 
Response activities comprise the immediate actions to save life, protect 
property and the environment, and provide services to meet basic human 
needs. Execution of emergency plans and related actions are essential elements 
of phased response. 

Prevention/mitigation is typically the first response of emergency management. 
The objective of prevention is to minimize the possibility of the occurrence of 
emergency incidents. Mitigation aims to eliminate or reduce the loss of lives 
and properties if the incident is inevitable. Since different hazards maintain 
diverse characteristics, agencies need to conduct hazards identification and risk 
assessment and develop mitigation strategies. Typically, prevention/mitigation 
activities have a long-term and sustained effect. In many cases, mitigation 
activities are elements of evacuation at the recovery stage. Take flooding 
incidents as an example, prevention/mitigation actions may include: 
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• Developing strategies for specific levels of flooding
• Protective and restrictive constructions in floodplains
• Rebuilding damaged structures with more resilient materials
• Flood mapping to identify low lying areas and relocating homes and

structures located if floodplains and flood prone areas

For transit agencies, the following strategies are recommended: 

• Involve staff in identification of hazards and threats
• Involve staff in creating strategies to prevent or mitigate emergency

incidents
• Raises staff awareness and conduct training across all departments for

specific incidents
• Assess and improve emergency response plan
• Train staff in use of emergency equipment and communication

technologies properly

Maintenance of Available Resources 
Vehicle Inspection 

As a safety control measure, careful bus or transit vehicle inspection should 
be conducted before each trip. This is especially needed for buses or transit 
vehicles participating in evacuation. Pre-trip inspection ensures the safe 
operating of transit vehicles. Typical inspection items are: 

• Fuel quantity and unusual indicators
• Low-beam/high-beam headlight, turning lights and other light systems
• Suspicious persons or objectives in the transit
• Security equipment and emergency supplies
• Suspicious objectives under the bonnet and transit
• Mechanical conditions

A checklist should be created to make sure every item inspection has been 
covered. If security risks are found, inform agencies immediately. 

Vehicle Maintenance 

Transit maintenance is required to remove potential risk to the transit drivers 
and passengers. It is crucial to keep the transit operation functional. Typical 
maintenance includes: 

• Daily servicing maintenance on consumables such as fuel, water, and oil
and tire pressure

• Periodic maintenance on potential damage items such as belts, electrical
cables, and tires
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•	 Interval maintenance on preventive repair or replacement of parts are loss 
or deterioration from use

•	 Failure maintenance on repair or replacement of parts that fail in-service

Emergency Planning 
A formal developed and organized Safety, Security, and Emergency 
Preparedness Plan (SSEPP) should be prepared across all potential involved 
agencies. The plan should outline the corresponding responsibilities of 
agencies, such as the process of preparedness, mitigation, response, and 
recovery for specific emergency incidents. Further, the plan should clearly 
illustrate the potential hazards and corresponding evacuation routes and 
strategies as well. It is desirable to post the plan template online. 

Regular Training 
Adequate and proper training is necessary to make clear the roles and 
responsibilities during evacuation. Tabletop exercises to discuss a simulated 
emergency scenario should be regularly conducted to test the evacuation 
plan in a relatively low-stress situation; the target is to clarify roles and 
responsibilities, improve the jurisdictional coordination, point out weaknesses 
of the current plan, and propose remedies to improve it. Ideally, all potentially 
affected people should participate in the training to fully understand the 
emergency evacuation plan, including but not limit to potential types of 
emergency situations or disasters, evacuation procedures, and responsibilities. 
For certain areas, people should focus on the potential type of emergency with 
the greatest possibility to occur. General and regular training should address the 
following: 

•	 Individual roles and responsibilities
•	 Types of potential emergencies and disasters
•	 Essential protective actions
•	 Warning, communication, and information dissemination system
•	 Emergency response procedures
•	 Location of shelters and surrounding routes
•	 Timing to help family member and others
•	 First-aid knowledge and procedures
•	 Necessary tools and equipment should be prepared
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Figure 10-9  Evacuation plan feedback process 

Recovery 
Recovery activities are intended to assess the current status of service facilities 
and restore available essential services. Repair and improvement are also 
included. 

Recovery Period 
In the early recovery period, the main task for agencies is to provide basic 
necessities for affected populations such as food and clean water supply, 
shelters can prevent secondary hazards. The early recovery process may last 
for a few weeks or months, depending on the severity of disaster. According to 
initial vulnerability, severity of disaster, and other considerations, a reasonable 
timeline should be developed. During medium and long-term recovery periods, 
the primary task is to rebuild the physical infrastructure per the new standards 
and experiences to make them more stable for disasters in the future. Schools 
for children should take extra care as they are always vulnerable and lack 
awareness about emergencies. 

Transit Recovery 
Continuity of Operations 

After a disaster, transit agencies need to assess the current transit system 
status to make sure it can still operate and proper measurements are required 
to remove the potential risk. A certain amount of funds is recommended to be 
reserved for the recovery of transit system in emergency after disasters. 

Operating Restoration 

Transit systems usually suffer destructive damage, and service must be 
suspended until essential parts are recovered. Under the condition of safety, 
transit agencies are recommended to sustain identified essential functions for 
up to 30 days. 

Long -Term Recovery 

The objective of long term recovery strategies is improved the service condition 
and try to improve the performance during the evacuation. Here are typical 
steps: 
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• According to disaster or emergency reports, develop long-term recovery
strategies and a corresponding schedule

• Estimate the loss caused and budget for recovery
• Assess the performance of transit during evacuation to attract more people

to take transit; if performance is not satisfied, strategies are required to
improve the situation and rebuild the confidence for transit users

• Strengthen coordination with other agencies or first responders

Example Disaster Mitigation Strategies 
Flooding 
Flooding is the overflow of water that submerges land which is usually dry. 
Reasons for flooding vary; it can be the overflow of water from a natural water 
body, such as rivers, lakes, or oceans or from artificial structures such as levees 
and dams. Natural disasters such as storms and hurricanes are another reason 
for flooding. A huge amount of water is not the only threat to people and 
property; moving water with speed, debris in the water all contribute to extra 
damage. 

Floods are relatively predictable, protective actions and evacuation plans 
should be conducted before the estimated time. All transit evacuation routes 
must be above the estimated flood elevation; potential inundation must be 
considered. If complete evacuation is not practical, locations of high-ground 
shelters and safe routes should be noted to impacted populations. Particular 
attention is required for recreational areas as visitors may not be familiar with 
evacuation routes. 

Different causes and the distance of flooding origin may give jurisdictions 
varying time to prepare. Intense storms may produce a flood for upstream 
locations in a few hours or even minutes;  downstream area may have one day 
or weeks to prepare. Floods may also destroy protective measures such as 
dams in a short time. Another uncommon type of flood is from snow melt; even 
though it may take months to develop, inspection is required. 

Essential considerations include the following:

• Understanding protective facilities in or near the jurisdiction
• Keeping in touch with monitor stations to update flooding information
• Identifying and present current and potential inundated areas
• Disseminating flood information, giving suggestions to evacuees
• Recognizing the possible route for transit operators to rescue affected

population
• Determining shelter locations and stops along the route
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• Assessing loss of transit resources and using available resources
• Estimating the number of affected population and locate their positions
• Refining and optimizing rescue routes

Hurricane 
Hurricanes are a type of severe tropical cyclone that forms over tropical or 
subtropical waters, with sustained strong winds spiraling inward and upward 
at speed of 75–200 mph. Hurricanes usually last around one week with speed 
of 10–20 miles per hour over the ocean. They rotate in a counter-clockwise 
direction with an “eye” as the center, which is the calmest part of a hurricane. 
Hurricanes bring heavy rains and strong winds and cause damages to trees and 
buildings. They are also potential contributors to secondary hazards such as 
flooding, tornados, and power outages. 

Assessments about affected population, facilities, and properties should be 
prepared and updated during hurricane disasters. An assessment is essential 
for agencies to determine the hurricane category and develop an evacuation 
plan. It should be compatible with the general evacuation plan and strategies. 
Typically, it is possible to predict the time duration and wind levels. According to 
previous research, 60–72 hours before the arrival is the awareness time phase, 
48-60 hours before the arrival is standby, and 48 hours before arrival is response
phase. Corresponding strategies should be developed, and the following
considerations should be included:

• Recognizing agencies that should be involved for hurricane evacuation
strategy

• Identifying affected and potentially affected populations
• Determining timing to publish information and take actions
• Collecting information of available and damaged resources
• Determining priority of evacuation
• Identifying evacuation zones based on collected information
• Identifying location of evacuation shelters
• Designing evacuation routes for specific zones
• Estimating the number of transit-dependent populations
• Recommending a phased evacuation plan

Earthquake 
An earthquake is a sudden, violate shaking or movement of the earth surface 
resulting from the sudden release of energy in the Earth's lithosphere that 
creates seismic waves and displacement of rock masses. Harmful consequences 
include: 
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• Ground motion damage to buildings, structures or roads, etc.
• Ground surface rupture
• Rock fall and landslide in mountainous area
• Undersea earthquake causing tsunamis
• Secondary hazards such as flooding and fires

For emergency response agencies, it is urgent to gather earthquake damage 
assessment information, which is essential to estimate the severity of the 
damage and plan the evacuation routes. It is also essential for rescue teams to 
re-enter the affected area to conduct Urban Search and Rescue (USR) activities, 
inspection, searching, and rescue:

• Determining severity and scope of damage
• Rescuing trapped population
• Emergency personals re-entry
• Checking current status of buildings and roads to avoid secondary hazards
• Restoring electrical power, natural gas, and water
• Emergency information dissemination and evacuation suggestions

Nuclear Events 
Typically, the possibility of nuclear accidents is extremely low. A possible way 
of nuclear accidents can be an operational accident or a terrorist attack. Civil 
nuclear facilities have higher productivity than traditional energy; however, if 
accidents occur, harmful effects may be as severe as nuclear weapons. Nuclear 
radiation is the major effect. Nuclear energy is from nuclear fission, a process 
that produces radioactive substances. If a nuclear power plant experiences an 
explosive accident, the debris produced by the explosion becomes radioactive. 
The debris is carried high into the air and falls back when it cools down in 
the form of particles called fallout. Radiation emitted from these particles is 
called gamma radiation, which is bad for human health. Consequences include 
radiation sickness such fatigue, vomiting, diarrhea, hemorrhage, infections, or 
even death. 

Once a nuclear accident occurs, it is crucial for emergency agencies to 
determine the location and amount of radiation materials. Coordination 
with involved jurisdictions is essential. Experienced persons in dealing with 
hazards associated with nuclear accidents should be assigned as emergency 
responders. 

Evacuation of the affected population is required. An evacuation plan should 
be developed based on a nuclear accident assessment. If a phased evacuation 
plan is implemented, details of evacuation timing, route, location of shelters, 
available transit resources, and stops along routes are required. All evacuation 
work must be done before the radiation moves into a specific jurisdiction. 
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Since nuclear accidents are always no-notice, advance evacuation should 
be prepared. Predesigned shelters and evacuation routes are significant. If a 
nuclear accident occurs, responders should focus on: 

• Identifying location of accidents and corresponding quantity of radiation
materials

• Determining levels of radiation exposure
• Using available protective equipment to mitigate situation
• Determining number of evacuees dependent on transit
• Distributing available radiological detection and decontamination

equipment
• Searching and treating the population affected by radiation
• Preparing recovery strategies after the nuclear accidents

Summary 
Generally, emergency management consists of four phases—identification, 
response, mitigation, and recovery. Actions and activities in each phase are 
not completely independent but often overlap. For instance, transit system 
rebuilding is an element of recovery; however, measures to prevent or mitigate 
a similar emergency should be considered. Phases of response and recovery 
overlap with each other. Lessons learned from emergencies in other cities, 
urban areas, or metropolitan areas should be referenced to be prepared for 
incidents in the future. As funding and jurisdictions are obstacles to building a 
complete and collaborative four-phase emergency management system, local 
and state governments may focus on different tasks in each phase. For this 
reason, inter- and intra-agency agreements are required among to make them 
work as integrated teams. 
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Implementation of Emergency 
Response Technologies11  
Signal Timing Prioritization 
without Power Failure 
Signal timing prioritization plays an important role in emergency management. 
During an evacuation, aggravation of traffic flow or increase of evacuation time 
are primarily generated at intersections with signals. The method of signal 
timing optimization/prioritization can be applied to an urban street network 
with extensive signals, which can decrease delay at an intersection significantly. 
In congested metropolitan areas, evacuation routes consist of freeways and 
urban street segments. In the case of freeways without signals, one direction 
or shoulders can be used for preemption to emergency vehicles. On the other 
hand, in emergency situations, optimizing traffic signal coordination could 
potentially help automobiles and transit vehicles traversing through an urban 
street network without experiencing extensive delays at intersections, which 
reduces evacuation time and improves the safety, stability, and regularity of 
evacuation traffic flow. According to several studies based on traffic simulation 
modeling (Chen et al., 2007; Jahangiri et al., 2011), it is shown that varied traffic 
signal coordination in an urban network has a significant impact on reducing 
clearance time and delay for cross-street traffic in evacuation circumstances. 

Under emergency situations, traffic signals have a significant influence on the 
progression of evacuation traffic flow. Therefore, optimizing signal timing and 
coordinating the system can substantially improve the performance of the 
evacuation traffic networks. Also, it is needed to offer signal time prioritization 
to respond vehicles and transits for effective evacuation in an emergency 
situation. There are several factors that affect signal timing prioritization—
traffic volume, capacity, magnitude of incidents, population of evacuees, 
transit, special event traffic, and weather. 

When an urgent circumstance occurs, it is common that chaotic traffic 
conditions or traffic fluctuation exist. For signal timing prioritization under 
an evacuation situations, traffic conditions can be separated into evacuation 
traffic delivering a population of evacuees (vehicles and transit), background 
traffic that affects capacity, and emergency response vehicles (ambulances, 
police, fire/rescue, and law enforcement). All need a different set of strategies 
for signal timing prioritization and coordination. For example, an important 
action is to transfer the population of evacuees in the affected area to safe 
places as quickly as possible, and it is crucial to stop background traffic from 

11 Authored by Zongzhi Li, Yongdoo Lee, Yunseung Noh, Lu Wang, and Ji Zhang, IIT
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entering the influence area and move them out of the area. Also, it is necessary 
to allow emergency vehicles to enter quickly without concern for traffic signals 
in the emergency situation. In addition, when signal timing prioritization is 
implemented, traffic regarding multiple directions of major intersections should 
be considered. Figure 11-1 shows the process of signal timing prioritization. 

Figure 11-1  Signal timing prioritization 

Conventional Traffic Signal Operations 
Signalized intersections provide the safe and efficient movement of vehicles 
and pedestrian traffic. In general, conventional traffic signal operations 
are coordinated to optimize the movement of vehicles and pedestrians on 
intersections. Each vehicle and pedestrian has sufficient time to move through 
the intersection safely and to minimize delay. In other words, along the aerial, 
traffic signal timing is coordinated to assign the right-of-way for alternating 
traffic movement to decrease the probability of crashes by reducing conflict 
and to minimize the average delay to a group of vehicles and pedestrians. The 
normal concept of conventional traffic signal operations is to minimize the 
number of phases, as the amount of lost time caused by starting delays and 
clearance intervals on intersection can be increased by additional phase. 

Traffic Signal Preemption for Emergency Vehicles 
Traffic signal preemption (SP) is to give the right-of-way to emergency response 
vehicles passing through signalized intersections. Generally, it uses special 
preempt control tools on authorized vehicles to enable to pass through 
signalized intersections in a safe and timely manner. In an evacuation situation, 
an SP system can be used for emergency vehicles as well as transit passing 
through major intersections by coordinating normal signal operation, including 
police, firefighter, rescue, ambulance law enforcement, and transit operators. 
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To initiate SP, there are several technologies to detect the approaching vehicles 
including light and infrared-based system, sound-based system, radio-
based emitter/detector system. Table 11-1 describes the features of the TSP 
technology (Paniati et al., 2006). 

When initiated, traffic signal preemption yields several negative impacts on 
traffic flow since it puts the traffic in other direction in stagnation. In other 
words, SP interrupts normal signal operation by truncating or omitting the 
normal vehicles and pedestrian phase on other approaches, which causes an 
increase in delay time at intersections. In addition, once preemption is made, 
it also takes time to recover to the normal signal cycle. Therefore, it is crucial 
to set signal preemption in a collaborative and coordinated manner with 
stakeholder groups to ensure their need. Major coordination considerations are 
cycle length, signal timing interval and split, and offset. 

Cycle Length 
The cycle length of a traffic signal is the total time for one complete sequence of 
signalization at an intersection. In general, cycle length is predetermined based 
on traffic volume of each direction on an intersection. The cycle length has an 
impact on the amount of lost time taken by the change and clearance intervals 
and adjacent signalized locations, and it determines intersection capacity. Once 
preemption is implemented, intersections are saturated with stagnant vehicles, 
which can increase in delay time. Therefore, change to optimum cycle length 
is important both to operate preemption efficiently for emergency vehicles in 
multiple directions of a major intersection and to reduce evacuation time under 
an emergency situation. 

Signal Phases 
The cycle length includes segments of individual phase splits, which is typically 
defined as the sum of the green, yellow, and red intervals. If emergency vehicles 

Technology Consideration Light and Infrared-
Based System

Sound-
Based

System
Radio-Based 

System

Emitter System Light/Optical Unit, 
Power Supply

Siren
Microphone

Radio Pulse,
Omni-directional

Antenna
Dedicated vehicle emitter required Yes No Yes
Susceptible to electronic noise interference No No Yes
Clear line of sight required Yes Yes No
Affected by weather Yes Yes No
Possible preemption of other approaches No Yes Yes

Table 11-1  Signal Preemption Technology Features 
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will be crossing within a phase, enough crossing time has to be provided with 
the minimum phase length. At the same time, a phase should have proper time 
to avoid over-saturating other approaches. Therefore, signal timing intervals 
and splits should be properly input to efficiently balance the movement of 
evacuees and emergency vehicles. 

Offset 
The offset is the time lapse between the beginning of a green phase at 
an intersection and the beginning of a corresponding green phase at the 
coordinated intersection. During emergency situations, properly designed 
offsets provide the efficient movement of emergency vehicles passing through 
multiple intersections, substantially reduce delay time on the intersection, and 
then yield decrease in clear time of evacuation in the network. 

Transit Signal Priority 
Transit signal priority (TSP) is to assign right-of-way to transit vehicles passing 
through intersections by traffic signal coordination to improve service of traffic 
capacity and reduce delay in an urban network. TSP is commonly used for 
buses but can be also used for streetcars, trams, or light rail lines. Under an 
evacuation circumstance, typical evacuees and special-needs populations 
such as injured victims or older adults use transit. Moreover, as the transit 
resource is an essential mode to evacuate carless population and it can move 
many evacuees out of the influence area at a time in emergency situations, TSP 
techniques substantially decrease evacuation time and improve the safety and 
stability of evacuation traffic flow by using traffic signal coordination along 
evacuation routes. 

To implement TSP, the existing signal timing along the arterial is modified 
without interrupting coordination. Several methods can be used for signal 
timing modifications, including changing phase sequences, extending or 
initiating early green time on the intended phase, and devising special phases to 
facilitate transit operations through the intersection. 

As TSP needs communications between the transit vehicle and traffic signal, the 
systems to detect the presence of approaching transit vehicles are required to 
implement priority in the traffic signal controller. TSP should also be conducted 
by considering transits and evacuation vehicles in major corridors in terms 
of network. TSP techniques can generally be classified as passive and active 
transit signal priority. 

Passive Transit Signal Priority 
Passive TSP operates signal timing by creating a green wave for traffic based on 
knowledge of transit route and ridership pattern along the transit line’s route, 
which may improve traffic flow and reduce transit travel time. An operation 
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of passive transit signal priority does not require special transit detectors and 
specialized traffic signal controller. The passive technique is applied when 
transit operation is predictable with routes, passenger load, schedule, and dwell 
time. 

Active Transit Signal Priority 
Active TSP is a strategy to provide a specific transit vehicle with priority 
treatment by detecting transit vehicles. Unlike passive TSP, active transit 
signal priority needs detector which is a transmitter on the transit vehicle and 
the signal controller. The techniques detect transit vehicles approaching an 
intersection and adjust the signal timing dynamically to enhance the transit 
vehicle service. Various types of active transit signal priority strategies can be 
used. Table 11-2 shows the strategies to apply active transit signal priority. 

Intermodal Transit Signal Optimization 
Intermodal Transit Signal Optimization (ITSO) is to deploy traffic signal 
timing plan that takes all transit modes into consideration. Transit operating 
characteristics ranging from travel speeds to acceleration/deceleration are 
considered to design for timing plans. Also, ITSO enables to sustain coordinated 
travel along the arterial for vehicles by optimizing timing at individual 

Strategy Description

Green extension
Extends green time for TSP movement if a transit vehicle is 
approaching. Applied only when signal is green for transit. Green 
extension is one of the most effective applications, as additional 
clearance intervals not required 

Early green
Shortens green time of preceding phases to expedite return to 
green whenever transit vehicle arrives at a red light. Used only 
when signal is red; green time shortened by predetermined time.

Actuated transit 
phase

Displayed only when a transit vehicle detected at intersection; 
enables transit vehicle to enter mainstream lane before general 
traffic given green phase to move forward. Can be used in 
location of near-side bus bay, streetcar lines, or on dedicated bus 
lanes 

Early red

Ends green interval early and returns to red interval sooner. 
If a transit vehicle is approaching during a green interval, it is 
estimated whether vehicle is far enough away that light would 
change to red by time it arrives. If transit vehicle would arrive 
at intersection during red light time, signal changes to red light 
early before vehicle approaches.

Phase rotation Changes order of phases so transit vehicles arrive at intersection 
during phase they need. 

Phase escape/ 
insertion

Returns phase that transit vehicles need in same cycle by using 
signal controller. 

Table 11-2  Strategies of Active Transit Signal Priority 
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intersections to minimize vehicle delay. It allows transit to move not-stop 
by traveling between stations alongside other vehicles using the normal 
coordinated timing along the arterial. For example, when a bus is approaching 
a station, the traffic signal system detects the vehicles and determines to either 
hold the bus at the station or discharge it so it will reach the next intersection 
during the green phase for other traffic. ITSO can be useful for two-way bus 
operations, relatively short headways, and short distances between stations. 
Furthermore, it can be used in arterial with exclusive transit lanes where other 
traffic has not an impact on the operation performance. 

Bus and Train Bridging for Efficient 
Transit Resource Use 
Role of Transit in Emergency Evacuation 
In an urban area, transit systems in terms of buses, BRT, trains, and alternative 
rail lines play an important role in an emergency evacuation situation, as 
demonstrated in the terrorist attack of September 11, 2001, and Hurricane 
Katrina in 2005. The population of evacuees might exceed the evacuation 
capacity due to congestion on urban networks, in which case transit assets 
can be used to transfer evacuees to shelters or other destinations outside the 
affected area. Also, transit services can be useful means of evacuation for those 
who lack access to private vehicles or vulnerable people (e.g., persons with 
disabilities, older adults, special-needs populations) during an emergency. In 
addition, in an aspect of supply side, transit systems can play a crucial role in 
transporting emergency workers and equipment to incident sites. Therefore, 
it is necessary to optimize the use of available transit resources in a time- and 
cost-effective manner under various emergency responses scenarios. 

Factors Affecting Efficient Transit Resource 
Use in Emergency Evacuations 
Use of transit resources under emergency evacuation depends strongly on 
several characteristics in affected area, including the characteristics of urban 
area and emergency and transit system and technology. These factors have 
an impact on the plan of efficient transit assets allocation to respond to an 
emergency. Specific factors are shown in Figure 11-2. 
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In evacuation plans, need for public transit resources is considered on the basis 
of the number of self-evacuating individuals, medically fragile individuals, and 
transit-dependent evacuees. Also, the plans for transit systems use depend 
on event strength, which has an influence on the number of evacuees and 
evacuation destinations. 

Transit Evacuation 
In general, people are more likely to use either transit or other modes for their 
daily commute in congested metropolitan areas. Therefore, when emergency 
situations occur, they may not have access to their private vehicles to respond 
immediately to an incident. When an incident occurs, responsible agencies 
ranging from city transportation administrations to emergency units should 
quickly device and execute a plan to allocate available public transit resources 
to evacuate carless population. For transit-supported evacuation, it is important 
to consider how to determine available transit and drivers, how to identify 
potential pick-up locations, how to provide transit routes/schedule to dispatch 
public transit resources efficiently, and how to determine a timetable for the 
drivers. 

Pick-up Locations 
During evacuations, it is needed first to guide and coordinate evacuees to 
nearby convening points and to schedule the transit vehicles at these pick-up 
points in accordance with time-dependent arrival pattern of the evacuees. 
When pick-up locations are set, they should cover all evacuees such as persons 
with disabilities, older adults, or the carless and minimize their total walking 
distance and time. 

Figure 11-2  Factors affecting efficient transit resource use 
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Transit Schedule/Route 
As the purpose of transit resource use for evacuation is to transport evacuees 
quickly by minimizing the transport time from pickup locations to shelters, it 
is important to optimize transit schedules and routes in the minimal amount 
of time. In other words, transit can be used as an efficient mode having flexible 
routes by servicing different pick-up locations at various runs based on actual 
need. During evacuations, for example, buses would be run on more relatively 
flexible routes than BRT operated on fixed route by being dispatching to the 
most needed pick-up location and serving adjustable routes and schedule. 

Boarding/Alighting Time 
Loading/unloading time is based on the actual boarding/alighting time. The 
actual boarding/ alighting time should be significant to generate transit routes 
and scheduling timetables. Neglecting this will overestimate the transport 
efficiency. 

Transit/Destination Capacity 
Capacity constraints regarding both transit and destination should be 
considered. If such constraints are not assessed properly, evacuees can be sent 
to the same places, which can result in overcrowding problems. 

One-Way Roadway and Urban 
Street Operations 
A well-designed road network will help the evacuation. Traffic control and 
operations management can make significant contributions to effective 
evacuation as well. During an evacuation, the main target is to move evacuees 
out and take emergency personals and vehicles into the affected areas as soon 
as possible. In this case, inbound and outbound demand will be unbalanced, 
and efficient traffic management strategy is required to deal with the problem. 
Coordinated signal timing prioritization, contraflow strategies, and demand/
capacity control strategies are all possible ways to make emergency evacuation 
more efficient. 

Traffic Control Devices 
Traffic control devices are traffic signs, signals, or markers to inform, guide, 
and control road users. Typically, they are placed along the highway or 
urban streets, intersections, and other places that require traffic control. For 
emergency evacuation, more temporary emergency traffic control devices are 
required to ensure the evacuation process clearly and efficiently. 
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Signs 
Functions of traffic signs including guiding, restricting, or controlling traffic 
operations to limit access of vehicles, give prior right-of-way to emergency 
vehicles, and provide emergency information. The location and use of signs 
should strictly follow the judgment and research of traffic engineers, in which 
the physical conditions and traffic factors should be considered to give the road 
users necessary warning guidance and other importation information. Specific 
signs such as contraflow signs and shelter locations signs are specially designed 
for emergency evacuation. 

Regulatory and warning signs should be used conservatively, as excess use of 
these signs will diminish effectiveness. Traffic signs for route guidance should 
be used frequently to help drivers perceive their real-time locations. This will 
be helpful if electronic systems are damaged during an emergency situation. To 
maintain the effectiveness of traffic signs, regular assessment or management 
methods should be used, including: 

• Visual nighttime inspection (retro-reflectivity satisfied the minimum levels)
• Measured sign retro-reflectivity
• Expected sign life (signs cannot older than expected design life)
• Blanket replacement
• Control signs
• Other methods.

State and local highway agencies have the rights and obligations to develop 
special word message signs for emergency situations if it is necessary to provide 
road users with additional regulatory, warning, or guidance information. For 
instance, for the contraflow strategy, signs along the reverse direction lanes are 
particularly important and differ to the regular signs. Drivers must always be 
aware of the start and end point of contraflow, especially if the freeway or the 
urban street is separated by medians, as they cannot see the traffic signs in the 
opposite direction. 

Pavement Markings 
Pavement markings are another way to convey messages to road users. 
Pavement markings can provide information on road conditions ahead, guide 
the route, and indicate the passing area. Typically, pavement markings include 
solid yellow lines, dashed yellow lines, solid white lines, and dashed white lines. 
Yellow lines are used to separate traffic flowing in the opposite direction and 
white lines are used to separate traffic flowing in the same direction. Dashed 
lines allow passing or lane change and the solid lines prohibit these actions. 
Following are factors that may have an impact on the performance of pavement 
markings: 
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• Environmental conditions (temperature, humidity, etc.)
• Roadway surface type
• Traffic volume
• Pavement marking materials
• Pavement surface cleaning moisture

Note that as pavement markings may be destroyed by the emergency situation, 
it is crucial to prepare emergency markings to avoid panic during an evacuation. 

Traffic Signals 
Traffic is defined as road users, including pedestrians, bicyclists, and vehicles 
using the roadway for the purpose of travel. Traffic signals are designed 
to control the right-of-way of traffic by giving signals directed to stop and 
permitted to proceed. Essentially, deciding parameters should include 
cycle length, number of phases, green splits, and offsets between adjacent 
intersections. The prerequisites to design the traffic signal are efficiency and 
safety. However, in reality, with an increase in demand, especially during an 
evacuation, it could be difficult to balance the two essential factors. Purposes of 
signal time designs are: 

• Maximize movement volume at intersections
• Provide orderly and efficient movement for road users
• Minimize frequency and severity of safety issues
• Consider requirements of special-needs people

Emergency signal time will significantly improve the efficiency of evacuation. 
To send more people out of the affected areas, transit vehicles can play a key 
role because of the large capacity. Bus signal priority (BSP) or transit signal 
priority (TSP) techniques are two advanced methods during an evacuation; time 
delay of transit vehicles is significantly reduced or even eliminated by either 
extending the green interval or shortening the red interval of the phase. Then, 
the efficiency gets improved. 

Shoulder Use 
Temporary shoulder use during an emergency evacuation means allowing 
specific types of vehicles to run on shoulder lanes temporarily if traffic demand 
exceeds available road capacity. It is possible to improve the road level of 
service by implementing shoulder use strategy. By allowing shoulder use, the 
speed limit may differ to normal lane use for safety. A major challenge that 
should be considered about shoulder use is how to give a way to the emergency 
vehicles, especially if the traffic volume is extremely high. Moreover, it is 
essential to determine the start-end point. Special traffic facilities and signs are 
required to indicate to evacuees if shoulder lane use is temporarily permitted or 
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where the start and end points are. Several European countries take temporary 
shoulder use as a management strategy to ease traffic congestion. 

Contraflow 
A practical strategy to make full use of available roadway capacity is contraflow. 
Inbound and outbound traffic demand will be significantly imbalanced during 
an emergency evacuation. Therefore, extra inbound traffic lanes are suggested 
to be converted to outbound lanes. Contraflow is a form of reversible traffic 
operation in which one or more travel lanes of a divided highway are used for 
the movement of traffic in the opposing direction. Contraflow has become one 
of the most typical evacuation traffic management strategies since Hurricane 
Floyd in 1999 and has been developed for use in coastal states from New 
Jersey to Florida on the Atlantic seaboard and from Florida west through Texas 
along the Gulf of Mexico. Transportation agencies play the leading role in the 
process. Contraflow is highly effective because it can significantly increase the 
directional capacity of a roadway almost without time and cost required. What 
is more, it is easy to understand for the public during an evacuation. 

Contraflow traffic management strategy is usually used on freeways as they 
have larger capacity and higher-speed operation. Moreover, freeway routes 
do not incorporate at-grade intersections so that the traffic flow will not be 
interrupted or restricted if access to the reversed segment. Freeway contraflow 
can be implemented and controlled with fewer human resources and facilities 
than typical urban streets. Also, shoulders in both direction can be considered 
as a temporary lane in an emergency to maximize the road capacity. The 
effectiveness of contraflow during a live operation was quantified by Wolshon 
(2008) based on traffic counts recorded during the Hurricane Katrina evacuation 
of south Louisiana in 2005. The flow rates measured during this event were 
about 75% of the adjacent normally flowing lanes. Although no firm explanation 
for these lower rates has been determined, this reduced flow is consistent with 
modeling predictions and simulation studies. 

Design Issues 
It is still complex to implement and operate in practice even though the basic 
concept of contraflow is simple. Drivers can be confused about the contraflow 
segments without clear and careful design and management. To ensure safety, 
improper access and egress movements are strictly prohibited at all the times 
during its operation. Opposing traffic should be fully cleared before initiating 
contraflow operations. Reversible roadways have a number of physical and 
operational attributes that are common among all applications. The principal 
physical attributes are related to spatial characteristics of the design, including its 
overall length, number of lanes, and the configuration and length of the inbound 
and outbound transition areas. The primary operational attributes are associated 
with the way in which the segment will be used and include the temporal control 
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of traffic movements. The temporal components of all reversible lane segments 
include the frequency and duration of a particular configuration and the time 
required to transition traffic from one direction to another. 

Contraflow Design 
The essential element of a contraflow plan is to identify the appropriate start/end 
points and corresponding traffic control strategies since congestion is very likely to 
occur at these points, which will reduce the effectiveness of contraflow strategy. 

According to the reviewed contraflow segments, the termination configurations 
are typically classified into two groups, split designs and merge designs. Split 
designs refer to the normal traffic and contra-flowing traffic will be routed to 
separate roadways at the terminus or the end of contraflow section. However, 
merge designs will merge two traffic flows and route to the normal direction. 
Traffic volume, road configuration, and availability of routing options at the end 
of the segment are typical significant factors to decide whether split designs or 
merge designs are to be implemented by traffic agencies. Generally, split designs 
offer higher levels of operational efficiency than merge designs. It is obvious that 
split designs reduce the potential bottleneck of traffic so possible congestion and 
crashes will be reduced or even avoided. However, it require two groups of traffic 
flow to exit to different routes, and road network resources need to be satisfied 
and experienced traffic staffs are required. In some older designs, the contraflow 
traffic flow stream was routed onto an intersecting arterial roadway. This type of 
split design requires adequate capacity on the receiving roadway. 

Similarly, merge termination designs also have pros and cons. The costs and 
benefits are almost the exact opposite of split designs in their end effect. For 
example, merge designs do not need to design a route for vehicles running 
in opposite direction lanes, which save road capacity and staff resources. 
However, merge designs have a greater potential to cause congestion and 
crashes because multiple lanes tend to merge into fewer lanes. During an 
evacuation, how to merge two high-volume roadways into one effectively and 
safely will be a main task for traffic agencies to consider. 

Figure 11-3  Design elements for use of contraflow 
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Lane-Based Routing 
Typically, intersections are a bottleneck problem that keep the traffic operating 
smoothly in urban areas, especially during an emergency evacuation. As shown 
in Figure 11-4, for a normal signalized intersection, there are 32 conflict points, 
including 16 crossing points, 8 merging points, and 8 diverging points. The 
number will be increased to 48 if bicycles and pedestrians are considered. 

Figure 11-4  Conflict points at intersection 

One effective method to reduce the number of conflict points is signal timing, 
but the lane-based route method is much more useful during an evacuation, 
as it not only reduces conflict points but also transfers traffic flow into a 
continuous flow and guides evacuees in the primary outbound direction away 
from a hazard area to the shelters and the safe locations. A lane-based routing 
plan selects turning options at intersections to improve the efficiency of traffic 
flow. Both police control and traffic barricades can be used in intersections. 
Figure 11-5 is an example.

Figure 11-5  Lane-based routing strategy  
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Street Parking Restrictions 
The primary function of streets is providing movement conditions for traffic. To 
preserve the primary function of a street, street parking needs proper control 
and management to make traffic operate smoothly. Street parking is permitted 
to engage people in social activities, however; street parking may be a potential 
factor of accidents and traffic delay. A parked vehicle can induce the delay 
of hundreds of vehicles; especially for the following cases, safety and delay 
problems are more severe: 

• Vehicles parked close to traffic lanes
• Process of vehicle parking and leaving
• Driver/passenger boarding or getting off
• Parking area near intersections

During emergency evacuations, street parking may be a constraint to 
conduct evacuations. Evacuees may have escaped the affected area by other 
transportation modes but left cars along the street, thus reducing the capacity 
of road segments and dragging the efficiency of evacuations. All illegally parked 
vehicles should be towed. Therefore, flexible and reasonable street parking 
policies are required to safeguard the evacuation proceed smoothly. 

Demand Responsive Emergency Response 
and Emergency Fleet Management 
Demand for Emergency Response 
Evacuation demand refers to the forecasted amount of travel demand during an 
evacuation; the basic principle is behavioral analysis. Emergency management 
departments need to determine the total number of evacuees to be moved to 
shelters or safety places and how many of them are willing to take transit and 
private vehicles. The analytical process typically follows the four-step method 
but special considerations are required. Transportation evacuation zones are 
divided based on the affected population and the severity of the affected areas. 
It will be a wort case if more people need to evacuate and emergency situations 
take place without notice. There is limited time for agencies to conduct and 
manage the evacuation. 

Demand management is an alternative effective way to deal with 
surging demand in an emergency evacuation. Typical methods including 
phased evacuation, background traffic management, transit evacuation 
encouragement, and shelter location selection. Phased evacuation is a 
systematic and controlled sequence of the evacuation process in different 
part of affected areas. The priority is typically defined by the level of risk or 
the severity of the emergency situation. Areas under the greatest risk or that 
suffered from the most severity should be evacuated as the first priority. Phased 
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evacuation is implemented as a series of successive, geographically smaller 
evacuations. Therefore, if affected people in different locations are guided 
to evacuate at different time periods, the surging traffic demand problem 
is mitigated or eliminated. The major challenge of phased evacuations is 
whether evacuees are willing to follow the guidance of agencies under great 
time pressure and the sense of fear of emergency. Therefore, although phased 
evacuation is  voluntary, accurate disaster information and recommendations 
should be disseminated. Background traffic minimization refers to the 
cancellation of unnecessary trips and makes full use of vehicle space. However, 
several unnecessary trips are not likely to be canceled due to work and family 
responsibilities. Special consideration is required. Shelter location selection is 
another major task for agencies that will greatly impact the evacuation route 
choice and corresponding road capacity. 

EMS Fleet Management 
A comprehensive emergency management system (EMS) is a concept that 
ensures the effectiveness of emergency management by minimizing risks, 
preparing for emergency situations, and helping in recovering from an 
emergency. 

Special Considerations for EMS Management 
Since Hurricane Katrina, planning for evacuations for special care facilities 
such as hospitals gained significantly increased attention. In most locations, 
responsibility for the movement of individuals who reside in care facilities fell to 
the manager of that facility. For example, contracts were signed between care 
facilities traffic providers such as ambulance and bus companies. Care centers, 
hospitals, and older adult residential areas cooperated to prepare for potential 
disasters. Special facilities and other suppliers include hospitals and healthcare 
facilities, gas stations, delivery and distribution of fuel, water, food and wrecker 
services, and schools.

Evacuation Groups with Special Needs 
Special-needs populations such as transit-dependent individuals refer to 
persons with disabilities and older people with walking or cognitive problems. 
Individuals with physical or cognitive limitations are not easy to evacuate by 
transit or private vehicle since further assistance could be required for walking, 
dressing, communicating, or recognizing directions correctly. All conditions limit 
the affected special-needs population to communicate with agencies or other 
people and it could be difficult to gather in the pick-up location by themselves. 
Agencies should pay special attention to special-needs populations to help 
them understand the situation and make arrangement as soon as possible; 
door-to-door pick up may be required for resource allocation and minimization 
lost during an emergency. 
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People with lower income or who live in low-income residential areas are 
more likely to be transit-dependent evacuees. They may have little knowledge 
about evacuation and lack regular exercise. Agencies should identify these 
groups ahead of a disaster and provide necessary training to them to optimize 
evacuation efficiency. It is also necessary to estimate the number of these 
people for agencies to prepare enough daily supplies. 

Older people and children are particularly vulnerable groups during an 
emergency. Older adults are more likely to have medical problems. Chronic 
health problems or limited mobility are threats to conducting a successful 
evacuation. Sight, hearing, or cognitive abilities can make things worse, 
which limits their capacity to follow instructions. Older people with lower 
incomes, living in isolation, or without communication facilities need more 
help as they have limited resources. Young children have yet to develop the 
resources, knowledge, or understanding to effectively cope with disaster and 
are more likely to be injured or disease during a risk. Young children also are 
more vulnerable when they are separated from their parents or guardians, for 
example, at school or in daycare. 

Special-needs populations include people with cognitive, physical, or sensory 
impairment that limits daily life activities. Physical impairments might include 
sight, hearing, or mobility limitations. Also, people depending on electricity to 
stay alive are considered part of the special-need population. Individuals with 
access and functional needs are categorized as special-needs as well. Assistants 
and assistant facilities are required to disseminate accurate information to this 
population group. 

Providing Medical Services during an Evacuation 
Medicine and treatment for injured people should be prepared during an 
evacuation. Medical and support staff in affected and adjacent areas must be 
properly licensed to permit their use. Ambulances and emergency supplies 
must be acquired. Administrative support must also be provided to account 
for and track the injured. Since roadway system will likely to be the primary 
means of transporting injured populations, agencies should consider priority for 
ambulances and vehicles with injured people. Additional assistance should be 
offered if required. 

Demand Uncertainty of Transit Evacuees 
The numbers of transit-dependent evacuees mainly depends on residential 
locations. Locations with higher-income residential areas may have a lower 
transit-dependent population. However, transit will be recommended during 
an evacuation. Therefore, the number of transit-dependent evacuees remains 
uncertain. The number of transit-dependent evacuees is usually represented as 
a random variable within a range, and stochastic programming approaches are 
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applied. But the result may be not satisfactory since it is difficult to define the 
range of random variables based on limited information during an evacuation. 
A more recent method to optimize decisions under uncertainty is robust 
optimization, which considers the worst case to apply in the model. Experience 
and supplementary algorithms are required to avoid being overly conservative. 

Transit System Protection and Recovery 
Transit system conditions need to be assessed after an emergency to determine 
proper working conditions or that potential risks should be removed. Specific 
funding is recommended to be reserved for the recovery of the transit system 
so it can be functional in a short time and used as an evacuation mode. If transit 
systems suffer destructive damage and service must be suspended, restoration 
operation is required for recovery. Transit agencies are recommended to sustain 
identified essential functions for up to 30 days. 

For long-term recovery, transit service conditions and performance should 
be improved in either a regular or evacuation situation. Typical steps include 
developing long-term recovery strategies and corresponding schedule 
according to the disaster or emergency reports, estimating the budget and 
loss for recovery, improving or rebuild the transit system to attract more users 
during evacuations, and strengthening coordination with other agencies or first 
responders. 

To ensure the transit system has good performance, vehicle inspection and 
maintenance are necessary. Theoretically, before each trip, transit inspection 
is required to be conducted carefully, especially for evacuations, to optimize 
safety performance. Typically inspecting items include fuel quantity and 
indicators inspection, headlight beam and light system inspection, clearing 
suspicious persons or objectives, security equipment and emergency supplies 
check, and mechanical conditions. 

A form for checking items should be created to make sure every item for 
inspection has been covered. If security risks are found, inform agencies 
immediately. Transit maintenance is required to remove potential risks to 
the transit drivers and passengers. It is crucial to keep the transit operating 
functionally. Typical maintenance includes daily servicing maintenance (fuel, 
water, oil and tire pressure), periodic maintenance (potential damage of 
belts, electrical cables and tires), interval-related maintenance (preventive 
repair or replacement of parts are loss or deterioration from use), and failure 
maintenance (repair or replacement of parts that fail in-service and cannot be 
used anymore). 
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Improved Sensor, Detection, 
and Probe Technologies 
During evacuations, it is needed to provide timely and accurate traffic 
information to effectively guide evacuees. Improved technologies for detecting 
information to access traffic flow rates and speeds, lane closures, hazard 
conditions, incident severity, and the availability of alternative routes are crucial 
for the effective management of evacuation processes. 

Intelligent Transportation Systems 
ITS technologies are advanced applications used to collect data and 
communicate and coordinate with travelers, agencies, and emergency vehicles 
by incorporating existing and developing technologies into their response 
plans for emergency situations. During evacuations, ITS enables transportation 
agencies to respond to the need for up-to-date evacuee information. The 
technology consists of both intelligent infrastructure systems and intelligent 
vehicle systems. ITS is commonly applied for real-time monitoring of travel 
condition such as traffic volume and speed and monitored information can 
be used to help not only agencies to make emergency plans and reroute 
traffic, but also evacuee determine when they start and end an evacuation. 
ITS technologies are capable of insights into the existence of flow-impeding 
incidents. 

Closed-Circuit Television Cameras 
CCTV cameras are a surveillance method to remotely monitor traffic condition. 
These cameras provide direct visual confirmation of traffic conditions at remote 
locations, which means incidents and their removal can be visually detected for 
evacuation management. Also, CCTV can be used as a security tool for linking 
the special spots in operation including public safety, hospital, and shelters 
during an evacuation. However, CCTV typically requires direct power and 
hardwired communication connections, which makes it difficult to achieve in 
remote locations along evacuation routes. 

Real-Time System Management Information Programs 
Real-time system management information programs are designed to monitor 
traffic and travel conditions in real time on major highways. The program is 
used to provide real-time highway and transit information needs and address 
the system to meet those needs. Additionally, the information can be used with 
ITS by updating the technology. 

Advanced Traveler Information Systems 
ATIS has been developed to enhance personal mobility, safety, and productivity 
of transportation. The systems monitor traffic and road conditions and provide 
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en-route traveler information including route-specific traffic, route guidance, 
and other pertinent information, which especially leads to reducing traffic 
congestion during evacuations. ATIS varies from highway advisory radio (HAR) 
with limited broadcast ranges to speech-activated automated phone services 
that enable users to obtain useful information about available transit service 
and expected travel times and evacuation duration. 

In-Vehicle Systems 
In-vehicle information systems use a video display inside a vehicle to detect 
a wide array of information and provide evacuees with information about 
route guidance and emergency situation. The systems are linked to national 
emergency organizations such NOAA or the hazard radio system; they play 
an active role as a channel to provide information received from official 
governments to travelers. They also connect with satellite radio providers to 
spread information quickly to a broad area and provide information to travelers 
carrying crucial recovery materials about any temporary changes to commercial 
vehicle restriction and offer emergency alert notifications such as evacuation 
text or audio messaging. Furthermore, in-vehicle information systems enable 
publicly-sponsored systems to monitor and disseminate information more 
accurately in emergency circumstances. 

Responder Communication and Coordination, 
Public and Traveler Information Dissemination 
Technologies 
When an emergency alarm occurs, it is essential for evacuees to know whether 
they need to evacuate, when they should leave, and where they could go. 
Therefore, authorities should offer this information and suggest safe routes by 
providing evacuees with timely, accurate, and useful information for an effective 
evacuation. Also, communication between public agencies and evacuees 
(vehicles and passengers) and coordination between emergency responders 
are critical components of an effective evacuation. Communication requires 
remote-sensing for information acquisition and dissemination technologies. 
The communication should treat information regarding before, during, and after 
an evacuation:

•	 (Before) To enable potential evacuees to be aware of a code of behavior 
and prepare for emergency situation, and develop strategies to ensure 
their personal safety 

•	 (During) To provide evacuees with available transit information, location of 
shelter, and route guidance 

•	 (After) To offer information about when they should return and where they 
may not be able to access 
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Responder Communication Guidance 
Timely and accurate communication to evacuation responders plays a crucial 
role in emergency situations, as evacuation are dynamic events. Especially at 
the initial level, it is useful to have the capacity to communicate to evacuees for 
effective evacuation. Plans and procedures to communicate with responders 
must be developed by both emergency management and transportation 
agencies long before emergency situations occur, which helps potential 
evacuees to anticipate their needs and plan accordingly and know when 
they should take action. Also, evacuation route maps and tip sheets should 
be disseminated in newspapers, stores, phone books, and even utility bills; 
emergency management and transportation agencies should use local media 
to provide information about the beginning of a hazard or use public/traveler 
information technologies including emergency alarm system, message signs, 
and radio to communicate with responders during evacuation. 

Coordination 
The coordination strategy for emergency response should be established 
by transportation agencies and emergency management together. For 
example, when an emergency happens, emergency management agencies 
should evaluate the situation accurately and announce both public response 
and transit agencies, and each agency should provide timely and accurate 
information. However, lack of coordination can yield duplication of efforts or 
gaps in response. 

Emergency Operations Center 
An emergency operation center (EOC) is a coordination hub designed to provide 
technical assistance to emergency responders and increase coordination 
capabilities to transportation agencies, emergency or safety agencies, and 
regional travelers at the scene of an emergency. It plays a role as a control 
center to coordinate response and recovery actions and resources. The center 
is a physical facility to collect and analyze data, establish strategies to protect 
life and property, make a decision about resource allocation, and disseminate 
decisions to all concerned responders. The EOC helps emergency responders 
to know the needs of transit resource, to coordinate transit resources use to 
provide emergency transportation requests and to disseminate information to 
transit evacuees. An EOC should have the capability of serving as the central 
coordination point for all emergency operations, information gathering 
and dissemination, and coordination with concerned governments and 
organizations. 
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Figure 11-6  Role of EOC for coordination of emergency management  

Effective Coordination 
An effective practice to enhance coordination is that an agency representative 
is sent to the EOC during emergencies to interact with other transportation 
representatives directly as dictated by local plans and policies. Also, 
transportation providers can join a unified command to address emergency 
transportation needs and coordinate with the EOC. 

Public and Traveler Information Dissemination Technologies 
Emergency Alert Systems 
An emergency alert system (EAS) is a national public warning system that 
uses an alert-and warning network on traditional TV and radio to alert the 
occurrence of an emergency. The system requires cable-television system, 
broadcasters, digital audio radio service providers, wireless cable systems, or 
direct broadcast satellite providers to provide the communications capability to 
concerned responders including local, state, and federal authorities to inform 
them of emergency situation. An EAS is regarded as one of the most efficient 
national alert systems since the system offers one message over more media to 
more people before, during, and after an emergency. 

Variable Message Signs 
VMS are traffic control devices called changeable message signs (CMS) or 
dynamic message signs (DMS) that can be pre-programmed or programmed 
in real time to offer information to travelers. The signs are commonly installed 
along major roadways in urban areas and designed to improve traffic flow and 
operations controlled from a remote centralized location or locally at the site. 
The information on VMS is generated as a result of a planned or unplanned 
event, which enables emergency responders to obtain real-time information 
such as travel times, locations of incidents, and the location of shelters, to avoid 
an incident and prepare for unavoidable conditions. 
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Web Alert 
Web alerts are an information dissemination technology used primarily 
before evacuation due to the limited availability of the wireless Internet along 
evacuation routes. However, today, it can be used before, during, and after 
evacuation with smartphone application or social media technologies. Web 
alerts help evacuees obtain information about emergency situations, traffic, 
and road conditions in real time and offer evacuation routes and shelter 
availability. 

Text Messaging 
Text messaging is an information dissemination technology to alert about 
an emergency. As nearly everyone has a cellphone, it is a useful tool to send 
emergency notification to the public easily within a second. Also, in times of 
emergency, text messaging can help recipients have additional information. 
However, a disadvantage is that only registered individuals receive the service. 

Highway Advisory Radio 
Highway advisory radio (HAR) is a form of emergency notification system to 
broadcast information to the public in a localized area. During emergency 
periods, HAR is used to disseminate incident information, evacuation routes, 
shelter locations, and locations of emergency services such as gas stations, 
hospitals, and rest areas while offering general travel information in non-
emergency situations. HAR uses AM radio band and requires a transmitter 
and radio station to send information. In emergency evacuation situations, it 
enables transportation and emergency managers to send information quickly to 
travelers. 
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