TAM Virtual Roundtable Data and Operationalizing

July 30, 2020

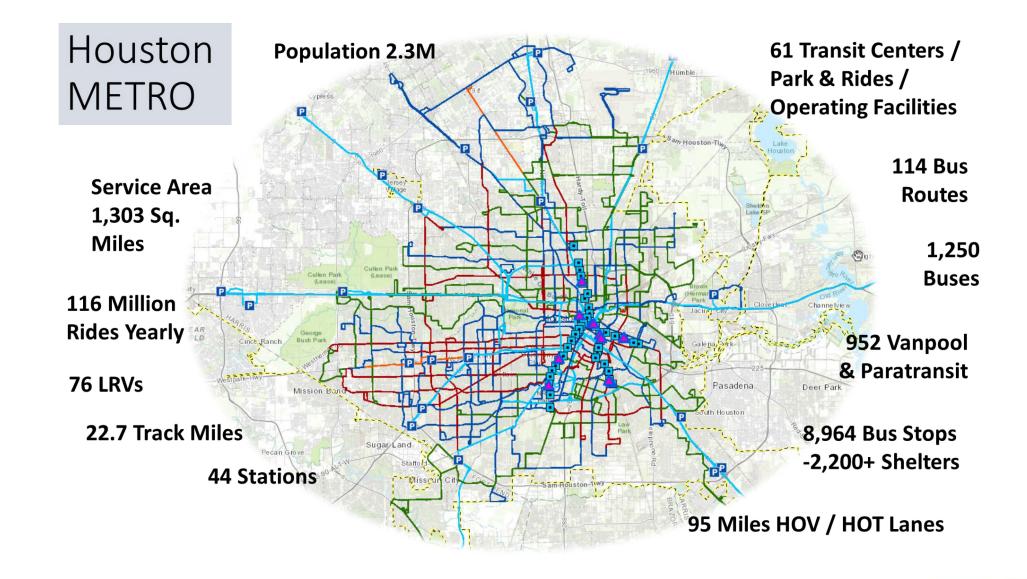
TRANSIT ASSET MANAGEMENT

Welcome and Introduction

- Reflections from Day 2
- Teams Logistics

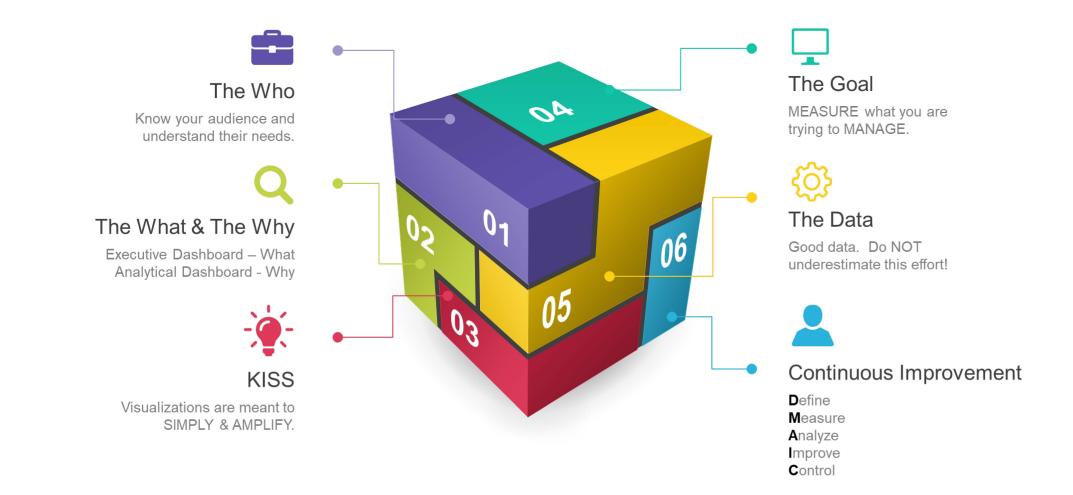
Alexi Miller and Alberto Aviles, Houston Metro Jeri Bernstein, Washington State Ferries Michael Quant, Los Angeles Metro

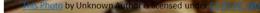
DATA AND OPERATIONALIZING



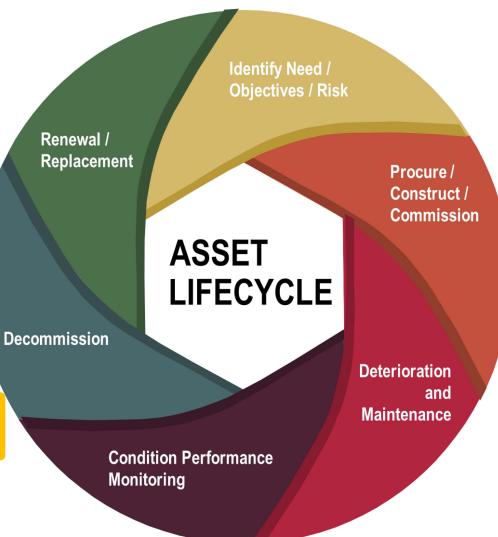
ASSET MANAGEMENT

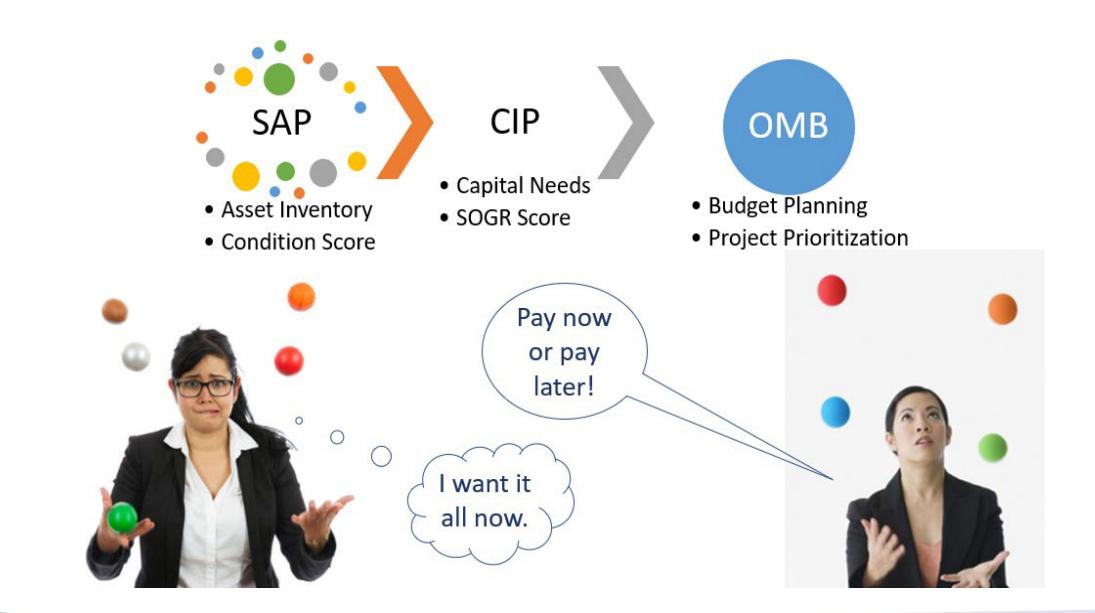
DATA VISUALIZATION


Using data to tell a story.



Our Top Rules for Data Reporting

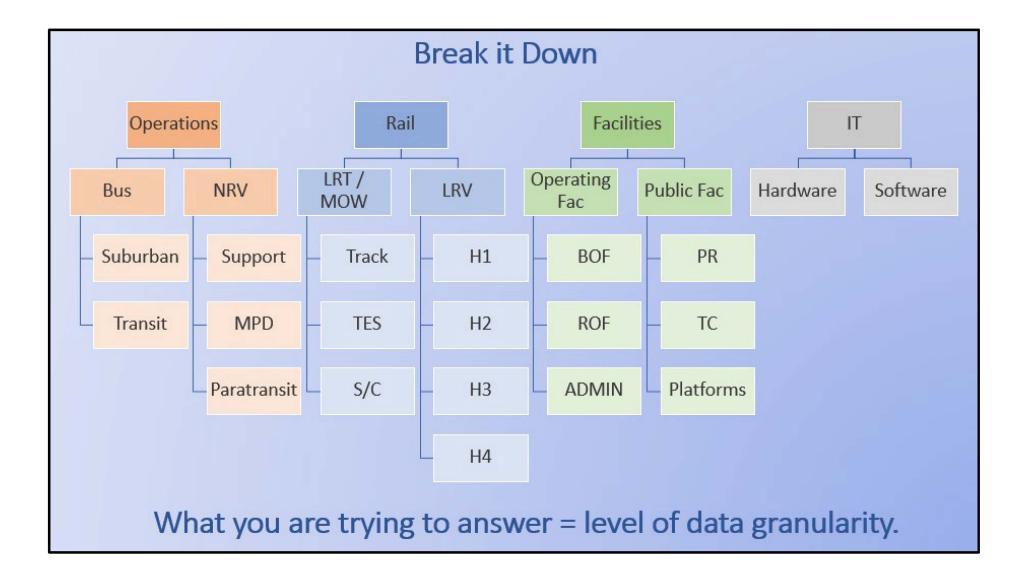

NO ONE WILL EVER LISTEN TO YOU MORE THAN SOMEONE WHO TRANSCRIBES YOUR WORDS.



- One source of truth: a system of record
- Consolidate EAM system(s)
- Policy for standardization
- Audit reports for data gaps

"The probability of hitting a target you haven't specified or aren't aiming at is low."

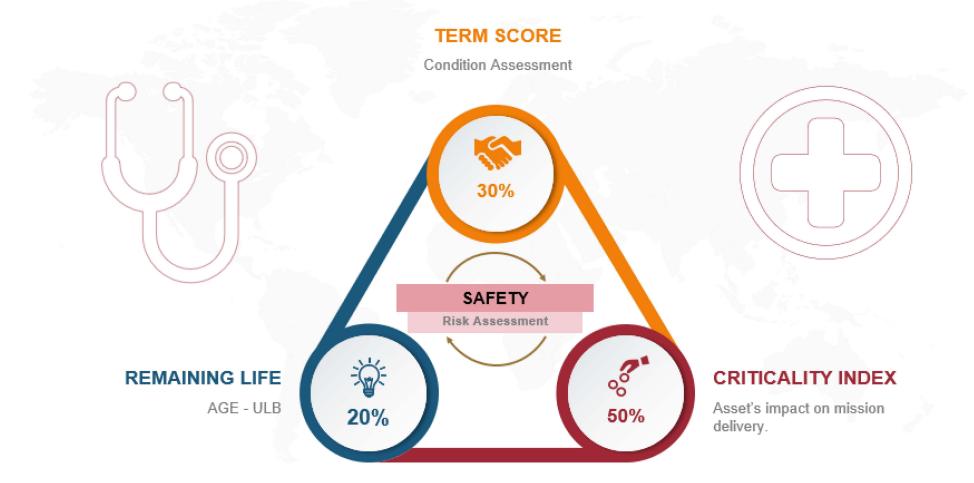
Define "State of Good Repair" Goals



Standardize Data

What is the condition score?

TERM Rat	ting	Condition	Description
Excellent	\$	4.8-5.0	No visible defects, near-new condition.
Good	Δ	4.0-4.7	Some slightly defective or deteriorated components.
Adequate	0	3.0–3.9	Moderately defective or deteriorated components.
Marginal	V	2.0–2.9	Defective or deteriorated components in need of replacement.
Poor		1.0-1.9	Seriously damaged components in need of immediate repair.
	1	2	-
	Ģ		
a states			
6			COM STA
	34	AL	
162		31	
		3	
Same?	-17	-	

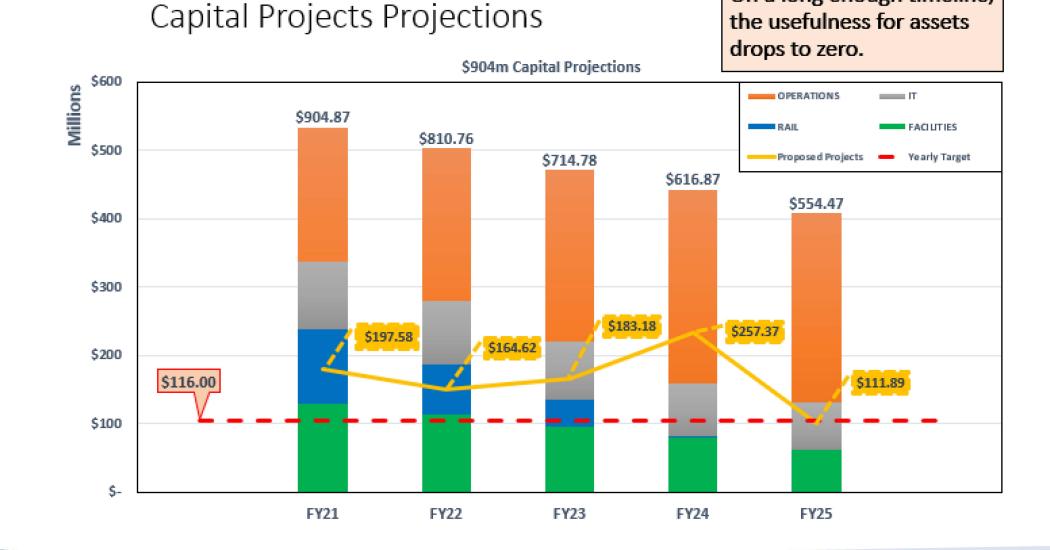


Measure "State of Good Repair"

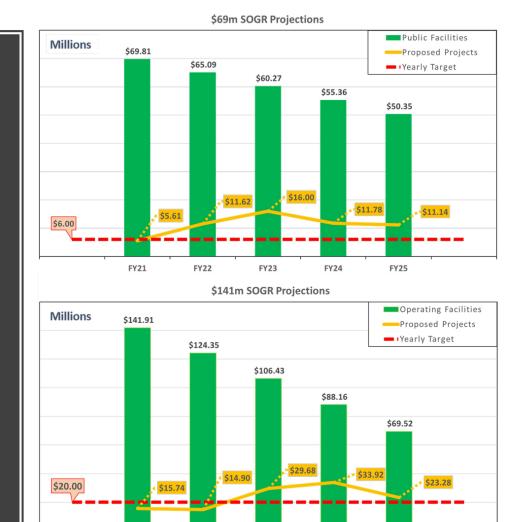
									Locati									
Aeas Position	GRIGGS STO	RAGE	POLK BO	F	FALLBROOK	BOF	HIRAM CLAP	RKE BOF	KASHMERE	BOF	WEST BO	F	NORTHWES	T BOF	FIELD SVC	TR	1900 MA	JIN .
ONVEYANCE				1.667	Δ.	2.000	V	2.000	V	2.000	V	2.000	V	2.500	0	3.000	Δ	4.0
LECTRICAL	0	3.875	0	3.000	V	2.633	<u>v</u>	2.441	<u>v</u>	2.763	4	2.533	<u>v</u>	2.962	<u>v</u>	2.048	0	3.3
QUIPMENT			<u>v</u>	2.000	<u>v</u>	2.000	~	2.154	<u>×</u>	2.231		1.846	v.	2.357	<u>v</u>	2.000	Δ	4.
RE PROTECTION	¢	5.000	°,	3.556	v o	2.813	<u>×</u>	2.947	<u>×</u>	2.923	0	3.000	0	3.000	V	2.875	0	3.
VAC	Δ	4.000	<u> </u>	3.233	<u>°</u>	3.240	× .	2.267	<u>v</u>	2.441	<u>v</u>	2.680	0 V	3.000	Δ	4.333	0	3.
ITERIORS	Δ	4.800	P	2.733	v T	2.167	¥	2.200	v v	2.421	v	2.250		2.200	⊽ ⊽	2.286	∆ 0	4 m
HELL	¢	5.000 3.615	Ť	2.933 2.487	v ⊽	2.786 2.094	v v	2.545 2.810	÷	2.800 2.866	o V	3.000	0 V	3.083	Ň	2.250	40	5 2
TE	ő	3,000	Ť	2.333	Ě.	1.967	v v	2,810	Ě.	2.866	Ť	2.000	Ě	1.958		2.000	÷	4 2
BSTRUCTURE	Š	5,000	ò	3.778	~	2.875	÷	2.875	v	2.800	ò	3.000	0	3.143	ž	2.750	Å	4
rand Total		3.841	<u> </u>	2.781	÷	2.407		2.518	÷.	2.639		2.408		2.469	- i	1.962	7	2.
Control 1 Stratt						E. 197	_			2.000		2.400				2.002		
								Facility	KPI									
							Excellent	5.00	0									
							Good	4.00 - 4.99	Δ									
							Adequate	3.00 - 3.99	0									
							Marginal	2.00 - 2.99	▼									
							Poor	1.00 - 1.99										



Elements of a SOGR Composite Score

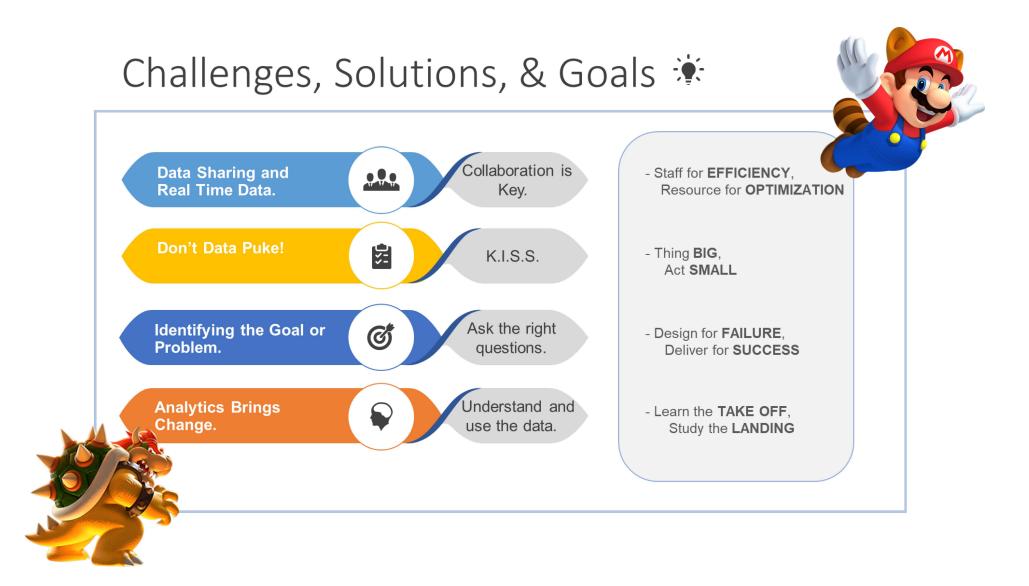


SOGR Dashboard



On a long enough timeline,

FY23


FY24

FY25

FY21

FY22

Where do we go from here?

Houston METRO Contact Info:

Alexi Miller, Director State of Good Repair alexi.miller@ridemtero.org

> Alberto Aviles, Sr Asset Management Analyst alberto.aviles@ridemetro.org

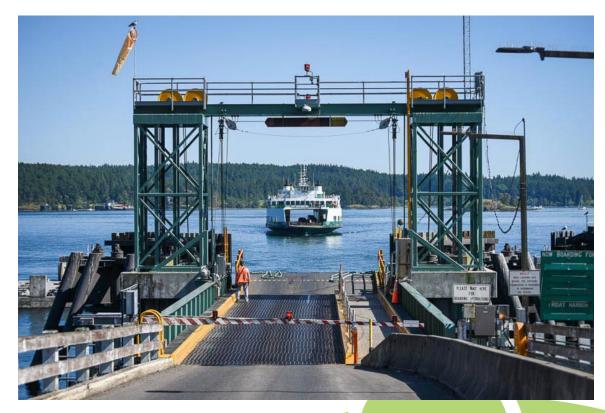
> > Additional Contributors:

Rick Dietz, Asset Specialist Michael Lunsford, Asset Specialist Al Vela, Asset Specialist Roscoe Bluiett, Asset Specialist (Rail)

Washington State Ferries

FTA ROUNDTABLE PRESENTATION

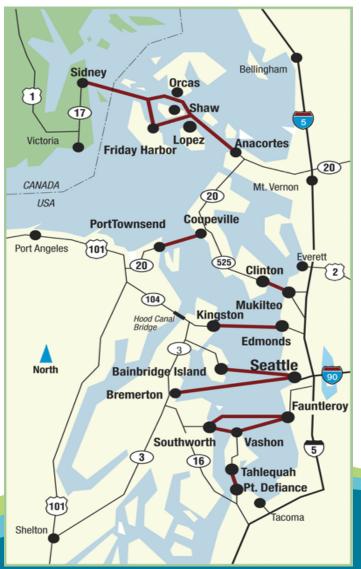
JULY 30, 2020


DECISION SUPPORT TOOLS FOR PASSENGER AND MAINTENANCE FACILITIES ASSETS

Jeri Bernstein, SE

PRESENTATION OUTLINE

- About Washington State Ferries (WSF)
- Asset Inventory
- Asset Condition
- Decision Support Tools
 - Economic Life/Service Life
 - Example Fauntleroy Facility
- Lessons Learned



WASHINGTON STATE FERRIES

- FTA Region 10-Puget Sound Region of WA State
- Largest fleet of vessels in the United States. (21 Vessels)
- 2019: 24 Million Riders

 11 Million Vehicles
 Busiest Terminal Seattle with 7000 ADT
- Operates 19 Passenger Facilities on 10 routes.
- Vessels are serviced at 1 Maintenance Facility.
- Part of WSDOT (State Highway Network) Serving 8 counties and Canada

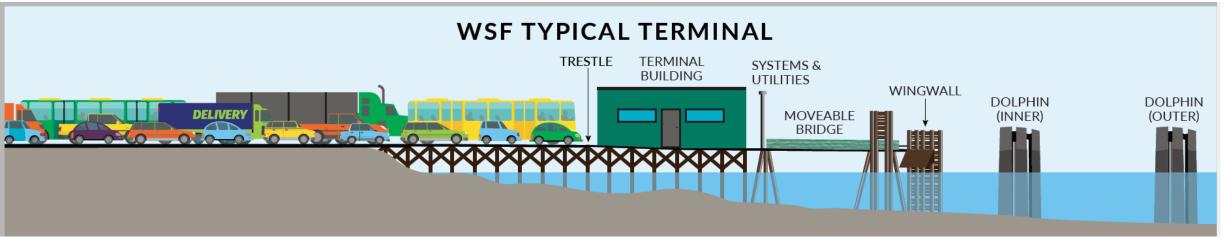
WASHINGTON STATE FERRIES

Tier 2 Agency-21 Ferry Vessels < 101 Revenue Vehicles FTA TAMP Plan Focus is 4 Elements

WSF-Division of WSDOT

State Transportation Asset Management Plan (STAMP) -meets requirements of FTA, FHWA, & WA State Legislature STAMP Contains all 9 elements of FTA TAMP Plan

Presentation Focus 3 Elements


Asset Inventory & Condition-19 Passenger Facilities & 1 Maintenance Facility Decision Support Tools

Element	Brief Description
l. An inventory of asset	A register of capital assets and information about those assets.
2. A condition assessment of inventoried assets	A rating of the assets' physical state; to be completed for assets an agency has direct capital responsibility for; should be at a level of detail sufficient to monitor and predict performance of inventoried assets
3. Description of a decision support tool	An analytic process or tool that (1) assists in capital asset investment prioritization and/or (2) estimates capital needs over time <i>does not necessarily mean software</i>
4. A prioritized list of investments	A prioritized list of projects or programs to manage or improve the SGR of capital assets

🕏 wsdot

ASSET INVENTORY-PASSENGER FACILITY ASSETS

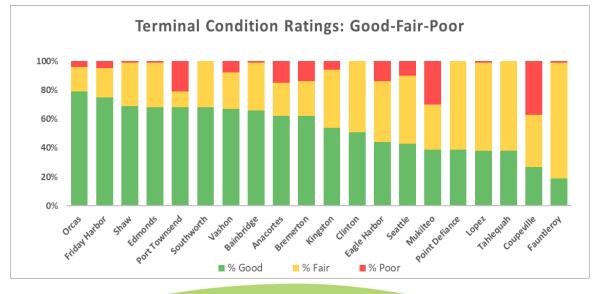
Facility Condition Reporting

- Condition value is weighted based on the replacement costs of individual assets
- New Assets under construction are not included in the condition report
- Does not include security systems, Generators and lighting, IT Systems, HVAC

SHAW FACILITY

Sub-Asset Description	Replacement Cost	Weight	Condition Score	Weighted Score
Dolphin, Right Intermediate, 12 Steel Pile Frame, Slip 1	\$2,316,000	0.109	5	0.54
Dolphin, Right Outer, 18 Steel Pile Frame, Slip 1	\$2,316,000	0.109	5	0.54
Wingwalls (L & R), 14L/13R Steel Pile Frame, Slip 1	\$3,721,000	0.174	4	0.70
Transfer Span (M-Span), Vehicle, Steel Open Girder, Slip 1	\$2,097,000	0.098	4	0.39
Apron (Hydraulic), Vehicle, Steel, Slip 1	\$463,000	0.022	4	0.09
Towers (L & R), Pipe Pile w/Rock anchors, Slip 1	\$2,401,000	0.113	4	0.45
Bridge Seat, Pipe Pile, Slip 1	\$1,108,000	0.052	3	0.16
Transfer Span Electrical Systems, Type 4, Slip 1	\$739,000	0.035	5	0.17
Transfer Span Mechanical Systems, Type 4, Slip 1	\$3,073,000	0.144	3	0.43
Trestle, Treated Timber (Creosote), Small	\$1,941,000	0.091	2	0.18
Bulkhead (Abutment), Concrete	\$720,000	0.034	3	0.10
Timber Trestle Overlay, MMA	\$161,000	0.008	2	0.02
Holding Lanes, Paved, BST, Upland	\$81,000	0.004	3	0.01
Parking Lot (Restrooms), Paved, BST, Upland	\$27,000	0.001	3	0.00
Agent / Attendant's Booth	\$24,000	0.001	3	0.00
Rest Room Building	\$100,000	0.005	4	0.02
Passenger Waiting Shelter	\$50,000	0.002	4	0.01
Total Score for Shaw Island				4

Facility Condition Reporting


Ins	pection Rating	Compar	isons by Gove	erning A	uthority
WSF	Description	FTA	Description	WSDOT /FHWA	Description
		5.0	Excellent		
90-100	Good	4.0	Good	90-100	Good
70-89	Fair	3.0	Adequate	70-89	Fair
50-69	Poor	2.0	Marginal	50-69	Poor
0-49	Substandard	1.0	Poor	0-49	Poor

	FTA Facility Condit	ion Rating Detail	
	Maintenance Facilities -	Annual Performance	
	2019 Target: -	2019 Performance: -	2020 Target: -
Terminal	Condition Rating	Condition Rating End	Condition Target
	Beginning of CY 2019	of CY 2019	Rating
Eagle Harbor	3	3	3
	Passenger Facilities - A	Annual Performance	
	2019 Target: -	2019 Performance: -	2020 Target: -
Terminal	Condition Rating	Condition Rating End	Condition Target
	Beginning of CY 2019	of CY 2019	Rating
Anacortes	3	3	3
Bainbridge Island	3	4	4
Bremerton	3	3	3
Clinton	4	4	4
Coupeville	3	3	3
Edmonds	3	3	3
Fauntleroy	3	3	3
Friday Harbor	3	3	3
Kington	3	3	3
Lopez Island	3	3	3
Mukilteo	3	3	3
Orcas island	3	3	3
Point Defiance	4	4	4
Port Townsend	3	3	3
Seattle	3	3	3
Shaw Island	4	4	4
Southworth	3	3	3
Tahlequah	3	3	3
Vashon Island	3	3	3
			26

Facility Condition Rankings

FTA Ratings 4 Good- 3 Adequate/Fair- 2 Marginal/Poor Green-Yellow-Red

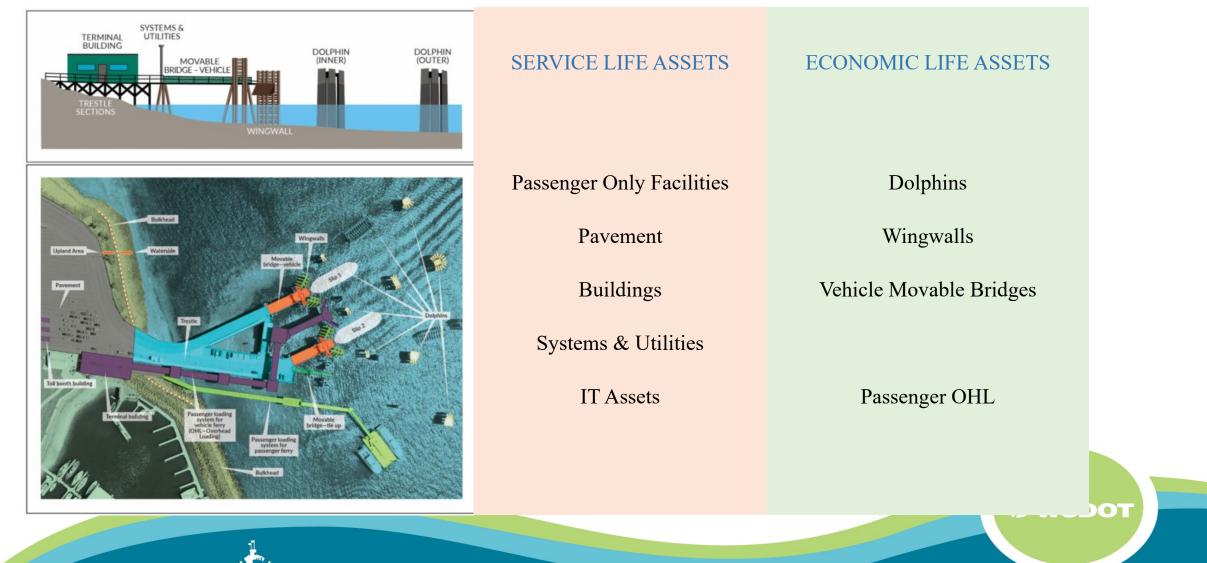
Washington State Ferries

Fauntleroy-Marginal Condition Movable Bridge Mechanical Systems; Capital Project-Replace entire terminal in 15 years

Coupeville-Marginal Condition Capital Project 2029-Timber Dolphins Monitor/Maintenance-Movable bridge foundation scour Maintenance-Movable bridge Mechanical system.

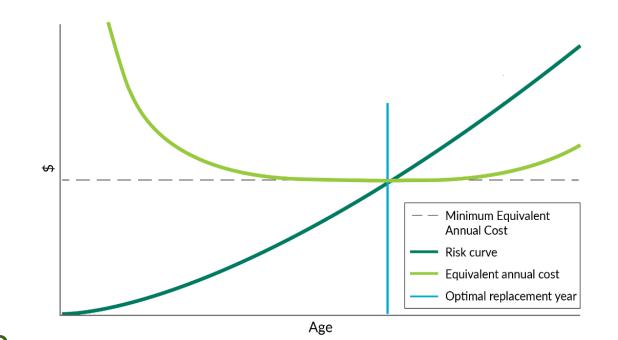
Decision Support Process

2 METHODS – COMBINED to ESTABLISH CAPITAL/MAINTENANCE PROJECT PRIORITY


- Adjusted Service Year Due (Without Risk): Service Life adjusted for Condition BASED ON INSPECTIONS
- Economic Year Due (With Risk): BASED ON ASSET MANAGEMENT MODEL
 - Includes the following parameters Ridership Impact Cost Maintenance Cost Probability & Consequence of Failure Seismic Failure...Toggle Off/On Operator Error Weather / Climate Change /Scour Structural/Electrical/Mechanical Failure

٠

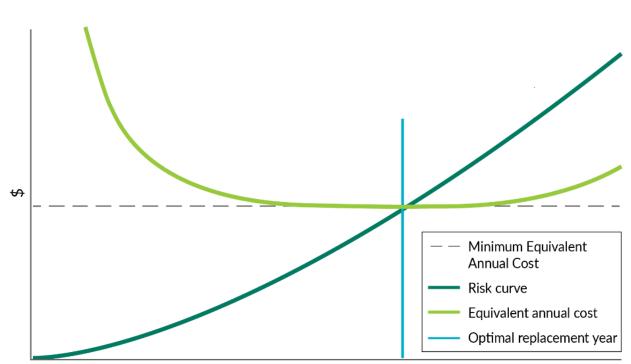
🕏 WSDOT


SERVICE LIFE-ECONOMIC LIFE

Washington State Ferries

ASSET MANAGEMENT MODEL

- Purpose-Prioritize Assets
- Uses Economical Cost Analysis
- Risk Cost Curve Terminal Ridership
 Physical Condition Ratings
 Planned Maintenance
 Unplanned Event & Consequence
 Elect., Mech., Structural Failure; Operator Error
 Scour Ratings from inspections; Weather


ASSET MANAGEMENT MODEL

Equivalent Annual Cost (EAC) Replacement Cost + Risk Cost Curve Age of Asset

Equivalent annual cost decreases with age only initially. Dashed Line-Min EAC

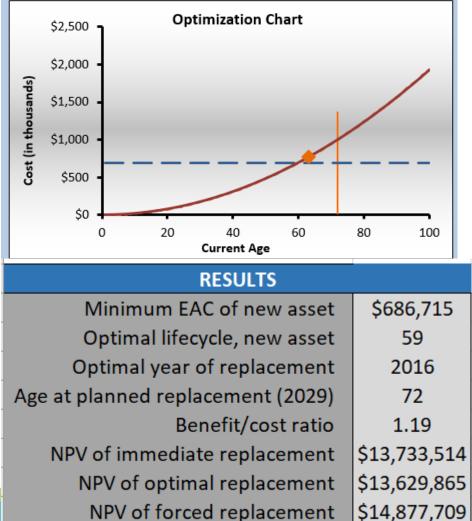
Optimal Replacement Year is intersection of Equivalent annual cost and risk cost curve.

Age

큤 WSDOT

EXAMPLE-FAUNTLEROY FERRY FACILITY

- Year Constructed
 - Timber Trestle: 1957
 - Steel Girder Movable Bridge: ~1989
 - Terminal Building: 1957
- Busy Terminal
 - Number of Riders/trip 4th highest in WSF system.
 - 40 daily trips leave the facility
 - Over 1 Million Vehicles/year



EXAMPLE – FAUNTLEROY TRESTLE ASSET MANAGEMENT MODEL RESULTS

- Year Constructed: 1957; Age=63 years
- Material: Timber Trestle with timber piles
- Optimal Replacement Year with all risks except for Seismic: 2016
- Fauntleroy trestle is exposed to high tides and storms. The Trestle carries a significant chance of damage due to a high tide combined with an extreme storm. Unplanned maintenance is highly likely at this terminal compared to other terminals.

FAUNTLEROY FACILITY ASSETS

ECONOMIC & SERVICE YEAR DUE

Washington State Ferries

🕏 wsdot

FAUNTLEROY FACILITY ASSETS

SERVICE YEAR DUE

Terminal	Slip	Sub-category	Condition Rating	Replacement Cost	Service Life Year Due	BC Ratio	
Fauntleroy	1	9A Main Terminal Building	87	\$1,125,000	2022	0.00	
Fauntleroy	1	9C Storage Buildings	80	\$9,000	2022	0.00	
Fauntleroy	2	9C Storage Buildings	87	\$28,000	2029	0.00	
Fauntleroy	2	9D Toll Booths	83	\$569,000	2030	0.00	
Fauntleroy	1	9D Toll Booths	87	\$332,000	2030	0.00	Adequate
Fauntleroy	1	7A Pavement	97	\$632,000	2034	0.00	
Fauntleroy	1	7B Traffic Lanes	100	\$163,000	2047	0.00	Good

ECONOMIC YEAR DUE

Terminal	Slip	Sub-category	Condition Rating	Replacement Cost	Economic Year Due	BC Ratio	
Fauntleroy	1	4A Trestle	76	\$10,643,000	2020	1.19	
Fauntleroy	1	4B Bulkhead	85	\$296,000	2020	1.45	
Fauntleroy	1	3E Transfer Span Electrical Systems	93	\$1,069,000	2020	2.42	Marginal
Fauntleroy	1	4A Trestle	85	\$1,636,000	2028	0.00	Adequate
Fauntleroy	2	4A Trestle	76	\$10,096,000	2034	0.00	Good
Fauntleroy	1	3B Apron	95	\$469,000	2034	0.00	
Fauntleroy	1	3C Towers	79	\$1,020,000	2037	0.00	
Fauntleroy	1	3F Transfer Span Mechanical Systems	75	\$3,413,000	2038	0.00	
Fauntleroy	1	3D Bridge Seat	76	\$1,042,000	2038	0.00	
Fauntleroy	2	4B Bulkhead	85	\$287,000	2043	0.00	
Fauntleroy	1	2 Wingwalls	96	\$3,618,000	2045	0.00	
Fauntleroy	1	1 Dolphin	87	\$968,000	2049	0.00	
Fauntleroy	1	1 Dolphin	91	\$968,000	2049	0.00	
Fauntleroy	1	1 Dolphin	88	\$1,140,000	2052	0.00	
Fauntleroy	1	1 Dolphin	90	\$2,252,000	2070	0.00	
Fauntleroy	1	1 Dolphin	92	\$2,252,000	2071	0.00	
Fauntleroy	1	3A Transfer Span	92	\$3,787,000	2103	0.00	

Washington State Ferries

LESSONS LEARNED

Model has been operating for 10 years

Understand-Results of Models is a Guide

Subject Matter and Entire Team input is used to produce final project list

Economic Life Model must be calibrated to make sure the results are reasonable.

There is no public ridership associated with the Vessel Maintenance Facility. The assets at the vessel maintenance facility rarely rise to a priority even though maintaining vessels is important to ferry system operations.

Island Facilities do not get as high of a priority

Failure risks and maintenance costs are based on historic expenditures, not all data is maintained at the asset level. Modeling risks are sometimes not accurate at the asset WSDOT

level.

LESSONS LEARNED

Will be competing with other WSDOT Assets for Preservation Dollars...WSF Priority should be comparable the rest of WSDOT

Focus on High Freight Routes, Island Routes, Largest Ridership Routes Seismic vulnerability is not a preservation issue

Questions?

Contributors:

 Dave Sowers, PE - Director Terminal Engineering
 Sree Srikanth, EIT, PHD-Asset Management Engineer
 Darin Johnson, PE-Bis Consulting LLC

Jeri Bernstein, SE Bernstj@wsdot.wa.gov

LESSONS LEARNED

Economic Life Model must be calibrated to make sure the results are reasonable.

Predicted maintenance needs at the asset level need to be developed beyond one Fiscal Year.

Electrical Components for Movable Bridge have 10 year economic & service life...always due even if replaced recently Most likely to have Unplanned Failures Components become obsolete

Question if Economic Life of Berthing Structures is reasonable....will compare to actual condition including steel pile corrosion and scour.

FTA Transit Asset Management Roundtable 2020 Transit Equipment Guides for Los Angeles Metro Rail Department

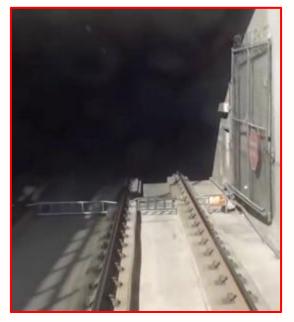
Michael Quant Los Angeles Metro, Maintenance & Engineering July 29-30, 2020

Topics

- Objective
- Background
- Los Angeles Metro service area
- Resources used to help locate equipment
- Factors that make it difficult to locate equipment
- Equipment guide case scenarios
- Review of equipment guide components
- Summary
- Questions & Discussion

Objective

Discuss various resources available to assist Transit Asset Management, Rail Operations, contractors, and emergency personnel to locate bus and rail equipment in a safe, efficient, and cost-effective manner.


Background

Various forms of bus and rail transit solutions are routinely implemented resulting in many interrelated pieces of equipment, all requiring maintenance.

Teams of Maintenance personnel are required to routinely inspect and repair equipment, as well as, support non-track personnel who perform contract services including FTA's Transit Asset Management, State-of-Good Repair (SGR) inspections.

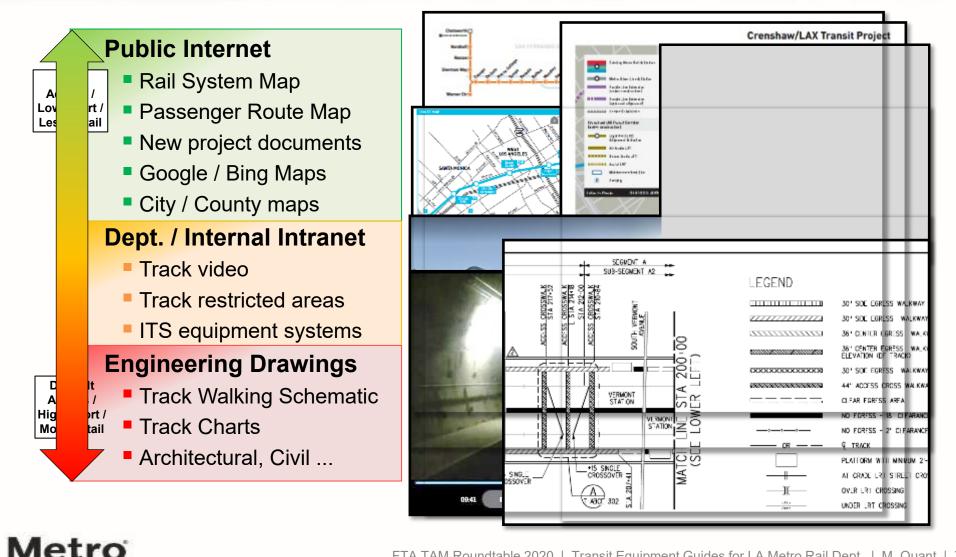
These teams requesting access, particularly to the rail system Right-of-Way (ROW), are required to answer a fundamental question, "Where is the equipment located?" "One of the major aims of education is to impart an appreciation of what and how much we do not know."

> **The Look of Maps** (1951) Arthur H. Robinson

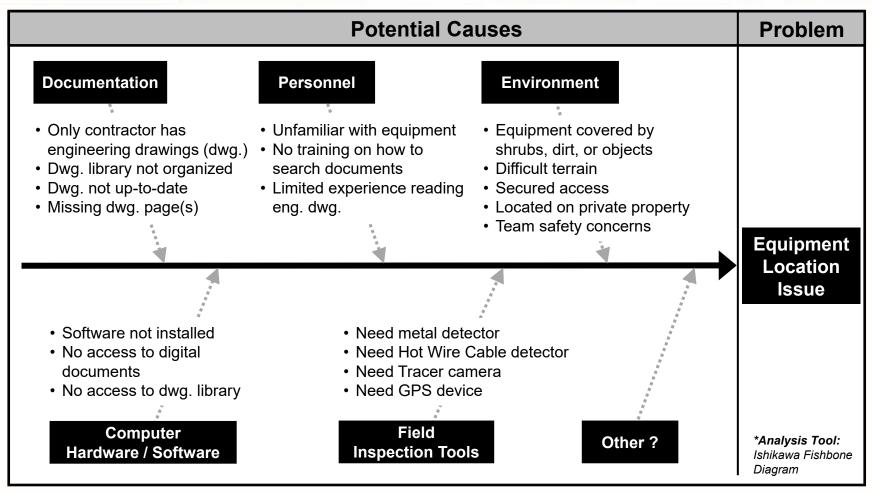


Los Angeles Metro service area

- Service area is approx.
 1,500 sq. mi.
- Bus transit


etro

- 4 Light Rail Lines (LRT)
- 2 Subway Lines (HR)
- 93 rail passenger stations
- 7 Rail Maint. Facilities
 Under Construction
- 3 rail lines (2 LRT, 1 HR)
- 19 passenger stations



Source: https://www.metro.net

Resources used to help locate equipment

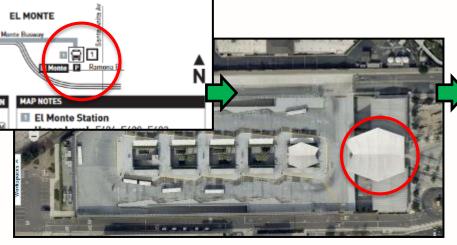
Factors that make it difficult to locate equipment

Case Scenario & Sample Formats

Equipment Guides - Single Sheet Map

Site Inspection: Map Case Exposed Electrical Wires

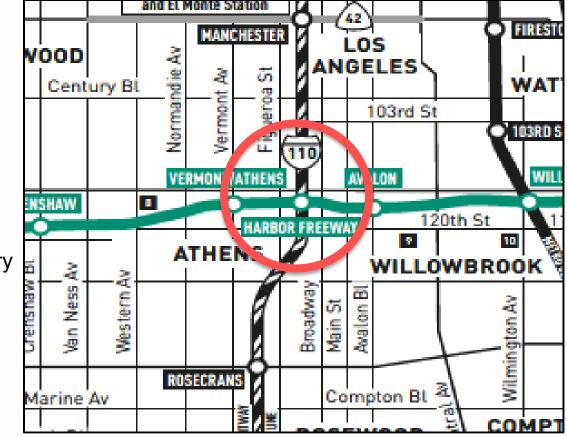
- **Issue:** Exposed electrical wires
- Location: College campus
- Resources:
 - Metro bus website
 - College campus website
 - Google Maps & Street View



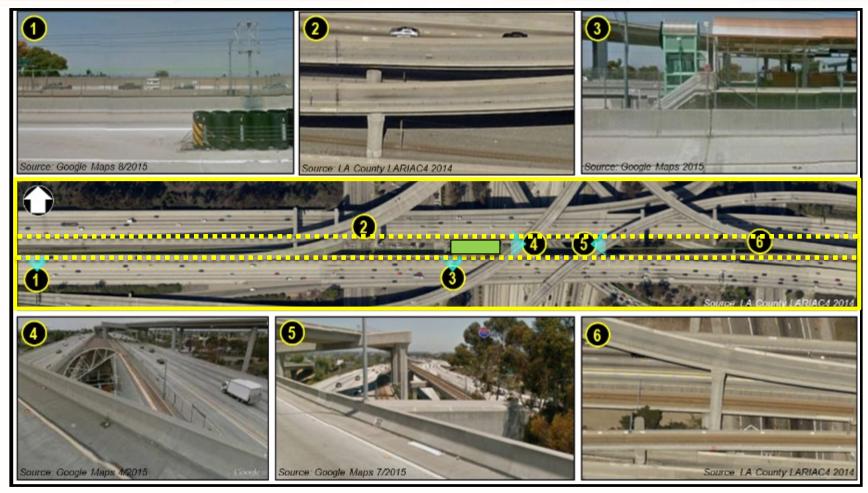
Site Inspection: Bus Station Fire Extinguisher Missing

- **Issue:** Missing Fire Extinguisher
- Location: Bus passenger station
- Resources:
 - Metro bus website
 - LA County aerial imagery
 - Map case station layout map

Site Study: Rail & Automobile Freeway Barrier Hazards


Issue:

Research freeway locations that cross over the train tracks and identify barrier height hazards


- Location: Light rail track
- Resources:

letro

- Rail route map
- LA County aerial imagery
- Google Street View

Site Study: Rail & Automobile Freeway Barrier Hazards

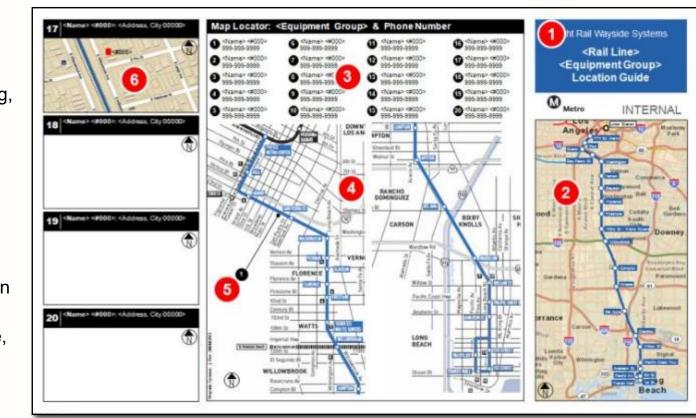
Case Scenario & Sample Formats

Equipment Guides - Brochure Format

Brochure: Traction Power Substation Locator Maps

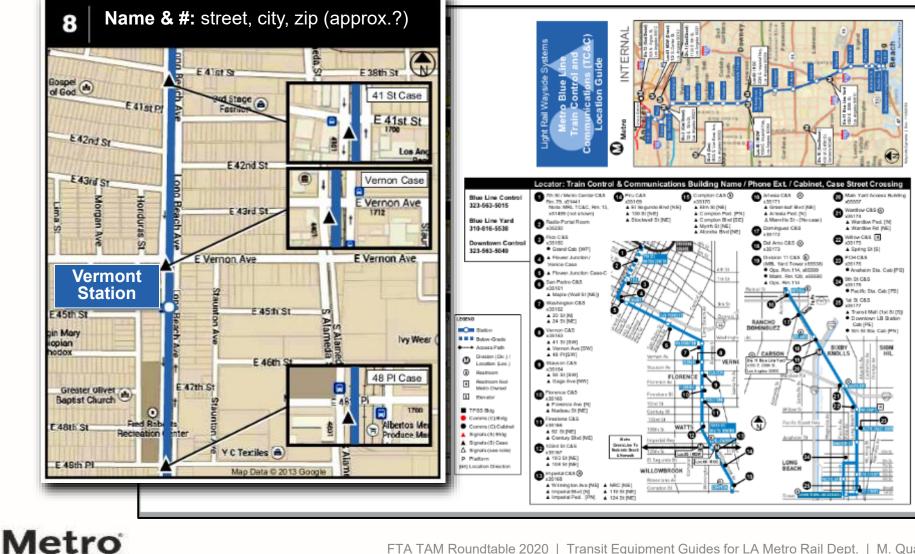
- **Issue:** New staff were unfamiliar with equipment locations
- Requested by Traction Power supervisor to help staff
- Identified user requirements
 - depict equipment location in relationship to freeway & local streets
 - street access path
 - equipment address & phone
 - small enough to fit into your pocket
 - standard paper sizes (letter, legal, tabloid)
 - provide PDF file for printing on department color copiers
- Post-production additions
 - vehicle fueling locations
 - rail station restrooms

letro

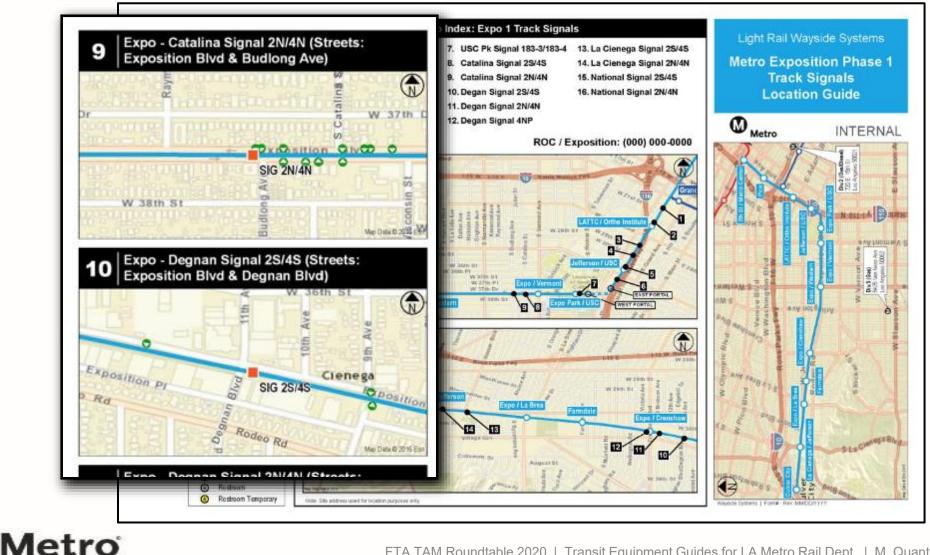


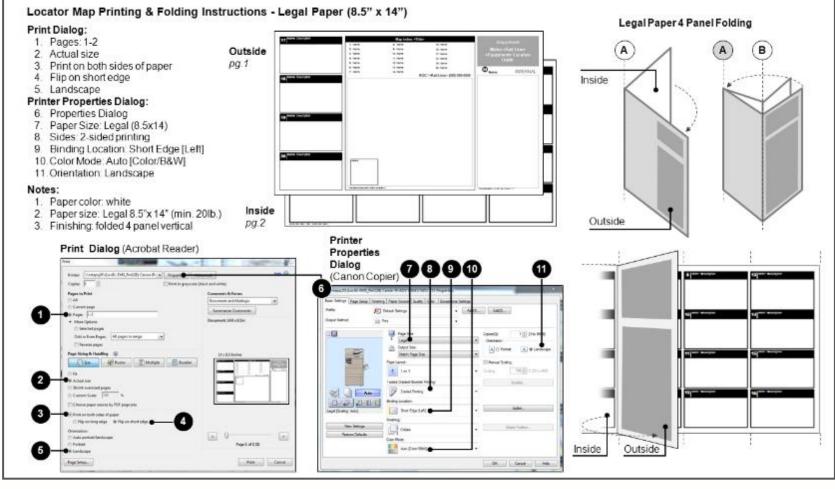
53

Traction Power Locator (continued)


- Publication design / format based on travel guides and venue maps
- Page layout produced with standard Microsoft Office PowerPoint
 - reduce software / production costs, utilize or train staff, high school or college interns
- Components
 - 1. Title block
 - 2. Hwy map (Google, Bing, Esri)
 - 3. Equipment index
 - 4. Index map (public route map)
 - 5. Equipment street location
 - 6. Detail street map (Google, Bing, Esri)

etro



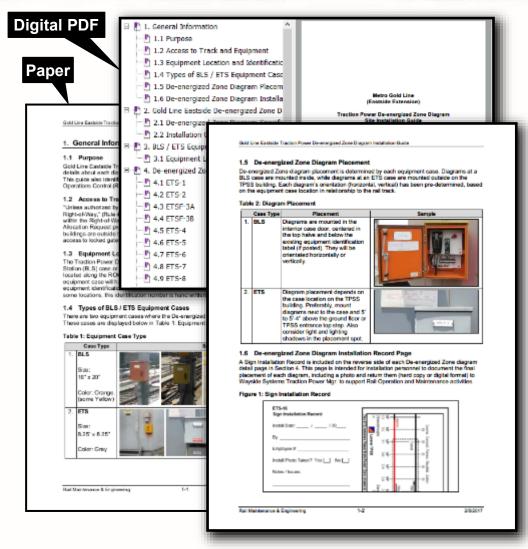

Template applied to Signal & Communication equipment

Template applied to prototype for Track Signal equipment

Template Printing & Folding Instructions Page

Case Scenario & Sample Formats

Equipment Guides - Report Format

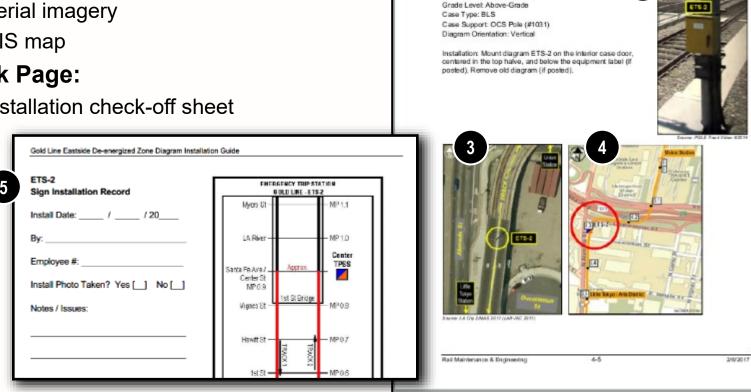


Report: Equipment Installation Guide Package

- **Project:** De-energized Zone Diagram replacement
- Location:
 Inside & outside track
- Risk: Low & High
- Resources:
 - Passenger route map
 - Google Map / Street View
 - LA County aerial imagery
 - CPUC Grade Crossing list
 - GIS software

letro

- Rail Instruction track video
- Engineering drawings


Equipment Installation Guide Package (continued)

Front Page:

- 1. Equipment information
- 2. Train video screen capture
- 3. Aerial imagery
- 4. GIS map

Back Page:

5. Installation check-off sheet

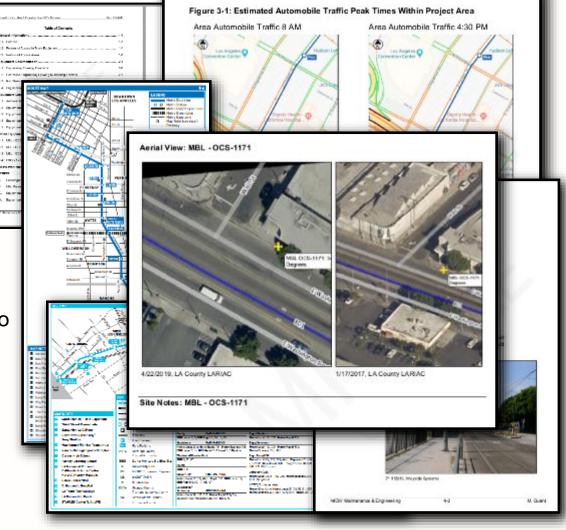
Gold Line Eastside De-energized Zone Diagram Installation Guide

BLS case is located on the guideway south of the Hwy 101, between the tracks on OCS Pole

4.2 ETS-2

ETS / ETSF No.: ETS-2 Engr. Station: 118+46

Mile Post Section: 0.3 Track No.: Center of Track 1 & 2 Located Inside ROW ?: Yes

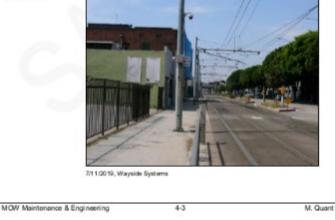

#1031.

Report: Equipment Location Guide Package

- **Project:** CCTV Camera upgrade
- Location: Inside & outside the track
- Risk: Low & High
- Resources:
 - Passenger route maps
 - Google traffic peak map
 - LA County aerial imagery
 - Rail Instruction track video
 - GIS software

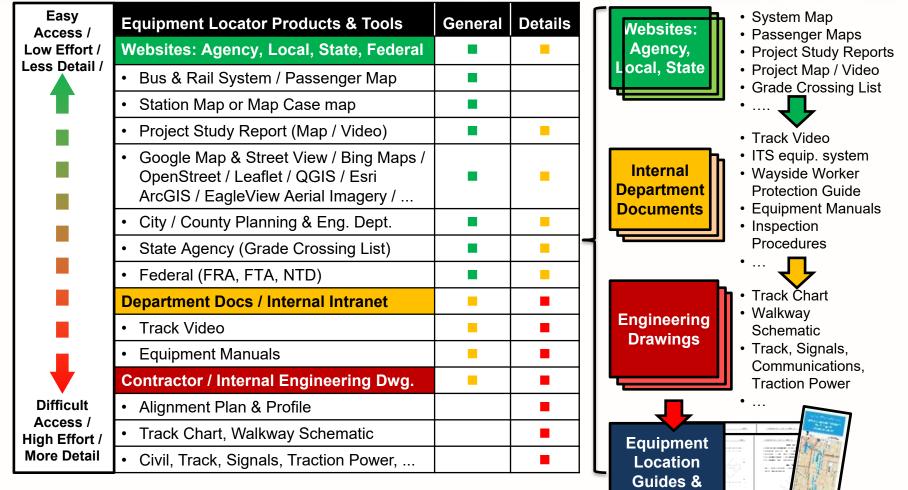
letro

Engineering drawings


Equipment Detail Page (one sheet, double-sided)

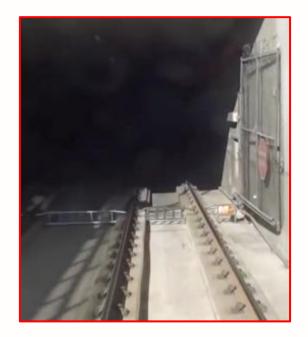
Front Page:

- 1. Transit Mode (Bus or Rail Line)
- 2. Equipment Type
- 3. Equipment Name/No.
- 4. Mile Post (approx.)
- 5. Track No.
- 6. Track Territory
- 7. Street Intersection
- 8. Address (approx.)
- 9. Engineering Stationing
- 10. Geographic Coordinates


- 11. Within ROW?12. Grade Level (Above, At, Below-Grade)
- 13. Access Point
- 14. Location Web map
- 15. Engineering Drawing List (Eng. Dwg.)
- 16. Notes
- 17. Site Photo
- Back Page:
- 18. Aerial View and Engineering Drawings details

Rail Line:	Blue, Exposition
Equipment Type:	OCS Pole
Equip. Name/No.:	OCS-1033
Mile Post (approx.):	0.90
Track No :	1
Track Territory:	Street Running
Street Intersection:	S Flower St & Venice Blvd
Address (approx.):	1370 S Flower St, Los Angeles, 90015
Eng. Stationing:	57+64
Geo. Coordinates:	34.038104, -118.267952
Within ROW:	Yes
Grade Level:	Al-Grade
Access Point:	Sidewalk
Location Webmap:	Google Map
Eng. Dwg. List	EXPO-1, 1-06, OC-E-390, 4/24/2012, Rev-3, As-Built EXPO-1, 1-06, Q-A-304A, 8/14/2013, Rev-3, As-Built
Notes:	Located on sidewalk. Distance from track = 7 ft.
Site Photo:	111

Review of Equipment Guide Components



Package

Summary

- Locating bus and rail equipment can be simple, difficult or dangerous
- Preparing location materials can be as easy as downloading a passenger route map from the agency website
- Factors that determine inspection team risk and hazards include equipment type, location, environmental conditions, and personnel experience or training
- Additional time spent collecting site inspection materials will enhance team awareness and safety, while reducing risk and cost

Questions & Discussion

Acknowledgements

- Maintenance & Engineering: Rail Communications, Signals, SCADA, Traction Power, Track, and Facilities departments
- Rail Operations Control (ROC)
- Rail Transportation Instruction
- Transit Asset Management
- Participating college interns involved in developing rail location materials (G. Valdivia, J. Wang, T. Watanabe)
- Staff and consultants who were surveyed and provided feedback for the report package content

Contact

Michael Quant

Los Angeles Metro Maintenance & Engineering quantm@metro.net

Please ask your questions in the chat pod and identify to whom they are directed. There will be an opportunity for open discussion later in the session.

PARTICIPANT QUESTION AND ANSWER

Please follow the link in your email from July 28 to report to your Microsoft Teams break-out room. If there are logistical issues, please put them in the chat pod. You will have 30 minutes in the breakout room.

BREAK-OUT DISCUSSION

Break-out Discussion Questions

- Do you have a dedicated resource or group that works to incorporate TAM data with internal reporting or business processes?
- How do you account for data that may be different from the FTA requirements or different from elsewhere in the agency?
 - Does your agency complement your TAM program with qualitative data and observations from field and maintenance staff?
 - Does your agency calculate anything differently than FTA's definition?
 For example, calculating the SGR backlog differently than how it is reported to NTD.
 - Are there cases where your TAM data is inconsistent with other data used within the agency?
- Can you share examples of how you have applied your TAM inventory and other data to support day to day operations? Do you have examples of how you have used it to locate assets in the field? Other examples? Has there been any feedback that has helped to advance your TAM program?

REPORT BACK AND OPEN DISCUSSION

THANK YOU FOR ATTENDING THE 2020 TAM ROUNDTABLE

Post-Event Evaluation

We value your feedback! Please complete a brief Post-Event Evaluation for today's Roundtable, using the website or QR code below. The link will also be posted in the chat pod.

https://www.surveymonkey.com/r/TAMinviteRT

