COVER PHOTO
Image courtesy of John A. Volpe National Transportation Systems Center

DISCLAIMER
This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The United States Government does not endorse products of manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report.
Metric Conversion Table

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU KNOW</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
<td>km</td>
</tr>
<tr>
<td>VOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl oz</td>
<td>fluid ounces</td>
<td>29.57</td>
<td>milliliters</td>
<td>mL</td>
</tr>
<tr>
<td>gal</td>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
<td>L</td>
</tr>
<tr>
<td>ft³</td>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>yd³</td>
<td>cubic yards</td>
<td>0.765</td>
<td>cubic meters</td>
<td>m³</td>
</tr>
<tr>
<td>NOTE: volumes greater than 1000 L shall be shown in m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>ounces</td>
<td>28.35</td>
<td>grams</td>
<td>g</td>
</tr>
<tr>
<td>lb</td>
<td>pounds</td>
<td>0.454</td>
<td>kilograms</td>
<td>kg</td>
</tr>
<tr>
<td>T</td>
<td>short tons (2000 lb)</td>
<td>0.907</td>
<td>megagrams (or “metric ton”)</td>
<td>Mg (or “t”)</td>
</tr>
<tr>
<td>TEMPERATURE (exact degrees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
<td>5 (F-32)/9 or (F-32)/1.8</td>
<td>Celsius</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
FTA has conducted research on conceptual ideas, prototypes, and commercially available products related to automated vehicle technologies for transit bus operations. The emerging automated transit bus market has received enthusiastic media coverage, but stakeholders may not clearly understand the difference between conceptual ideas, prototype systems, and available products. To help align expectations with reality and assist in transit agency planning, this market assessment report conveys the state of automated transit bus technology in terms of its availability, capabilities, and limitations. It aims to inform the Federal Transit Administration, transit agencies, and other transit industry stakeholders interested in understanding the market. This market assessment considers automation at all levels and a broad definition of transit bus, including a range of passenger capacities and both traditional and novel vehicle designs. This report references company and product names, but they are included only for illustrative purposes and do not represent an endorsement.

TABLE OF CONTENTS

1 Executive Summary
3 Section 1: Introduction
6 Section 2: Market Assessment
19 Section 3: Selected Research and Pilot Project Summaries
27 Section 4: Conclusions
29 Appendix A: Companies Contacted
30 Acronyms and Abbreviations
32 References
38 Addendum 1
Abstract

FTA has conducted research on conceptual ideas, prototypes, and commercially available products related to automated vehicle technologies for transit bus operations. The emerging automated transit bus market has received enthusiastic media coverage, but stakeholders may not clearly understand the difference between conceptual ideas, prototype systems, and available products. To help align expectations with reality and assist in transit agency planning, this market assessment report conveys the state of automated transit bus technology in terms of its availability, capabilities, and limitations. It aims to inform the Federal Transit Administration, transit agencies, and other transit industry stakeholders interested in understanding the market. This market assessment considers automation at all levels and a broad definition of transit bus, including a range of passenger capacities and both traditional and novel vehicle designs. This report references company and product names, but they are included only for illustrative purposes and do not represent an endorsement.
The emerging automated transit bus market has received enthusiastic media coverage, but stakeholders may not clearly understand the difference between conceptual ideas, prototype systems, and available products. To help align expectations with reality and assist in transit agency planning, this market assessment report conveys the state of automated transit bus technology in terms of its availability, capabilities, and limitations. It aims to inform the Federal Transit Administration (FTA), transit agencies, and other transit industry stakeholders interested in understanding the market.

This market assessment considers automation at all levels and a broad definition of transit bus, including a range of passenger capacities and both traditional and novel vehicle designs. Whereas this report references company and product names, they are included only for illustrative purposes and do not represent an endorsement.

To gather relevant information, research staff conducted a scan of literature and arranged meetings with industry representatives, including bus manufacturers, suppliers, and new entrants (such as automated shuttle providers). These efforts helped research staff learn more about current and future products (including their characteristics, availability, and costs), research and commercialization activities, and commercialization challenges.

Key findings from the report include the following:

- Media coverage related to new transit bus automation products or capabilities is often ahead of actual technology development. Currently, the transit bus automation systems that have been developed are in the pilot testing stage or earlier stages of development.
- Technology costs are unknown at this point, because the transit bus automation systems that exist are prototypes rather than commercialized products.
- Current automation technology for other vehicle types addresses use cases, such as highway driving, which may have limited applicability for transit service.
- Bringing automation technology into buses is difficult due to the relatively low volumes and high level of customization in the current domestic bus market, as well as a perceived lack of interest from transit agency customers.
- Although the technology may not be available currently, bus manufacturers are working with suppliers to understand the development timelines for new features and have high-level roadmaps for their introduction.
- A high degree of uncertainty in areas such as pedestrian and occupant behavior and safety, insurance and liability, operator acceptance, and new service models may pose additional barriers to commercialization. There are additional needs in the areas of communication and education.
• Industry representatives noted that Federal funding for demonstration and pilot programs is essential to making technological progress and answering questions on the feasibility of automation systems for transit buses.

Vehicle automation is a rapidly-evolving field with multiple potential paths to commercialization. As a result, new technologies may be developed and commercialized following the publication of this report.
Introduction

Automated vehicle technologies have generated significant interest in terms of their potentially transformational role in society. Companies are actively and extensively showcasing new concept vehicles and systems at auto shows, testing prototypes on public roads, and introducing advanced driver assistance features on new production vehicles. Automation is being applied to all on-road modes of transportation, including personal vehicles, taxis, commercial trucks, and transit buses. Whereas the emerging automated transit bus market has received enthusiastic media coverage, stakeholders may not clearly understand the difference between conceptual ideas, prototypes, and available products. This market assessment is intended to help communicate the realities of automated transit bus technology in terms of its availability, capabilities, and limitations.

Purpose

To support the development and deployment of automated bus transit services, the U.S. Department of Transportation (USDOT) Federal Transit Administration (FTA) has developed a five-year Strategic Transit Automation Research (STAR) Plan that outlines the agency’s research agenda on automation technologies.\(^1\) As part of the research outlined in the STAR Plan, this report discusses the state of the industry in terms of what technologies are commercially available or may become commercially available in the near future. It also discusses some of the challenges impeding development and commercialization of transit bus automation technologies. This report is designed to provide a realistic market assessment to inform FTA and public transportation agency decision-makers, who are the primary audiences. The information in this report is intended to help align expectations with the current state of industry and assist transit agencies in planning the timing and scope of potential demonstration and pilot activities.

Scope

This report considers transit bus automation systems across all levels of automation (SAE Levels 0–5).\(^2\) Although it focuses on systems with automated

\(^1\) For more information on this work and access to a draft of the Strategic Transit Automation Research Plan document, visit https://www.transit.dot.gov/research-innovation/strategic-transit-automation-research-plan.

\(^2\) SAE Level 0 systems include both systems without any automation that provide warnings to drivers (e.g., collision warning systems), and systems which provide momentary automated control of the vehicle (automatic emergency braking). Systems that provide momentary automated control of the vehicle are considered within scope for this report, though some systems that do not include automation (e.g., products from Mobileye and Protran) are also mentioned as potential precursors to automation systems. SAE International (2018), “J3016_201806: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,” SAE International Standard, https://www.sae.org/standards/content/j3016_201806/.
actuation (e.g., automated braking, steering, or throttle), it also, to some extent, addresses driver warning systems with limited or no automation. For the purposes of FTA’s STAR Plan, “bus” is defined broadly to consider a range of passenger capacities and both traditional and novel vehicle designs (e.g., ranging from smaller shuttle vehicles to 40-ft transit buses and longer articulated buses). Whereas this report references company and product names, they are included only for illustrative purposes and do not represent an endorsement.

Methodology
Project staff conducted a scan of literature (e.g., press releases, company websites, and other publicly-available materials) on commercially-available technologies and commercialization timelines for prototype technologies relevant for transit bus automation. The findings from this scan are documented in this report and were used to inform an industry outreach effort through phone interviews and in-person meetings with industry representatives, including bus manufacturers, suppliers, and new entrants, described below:

• **Bus Manufacturers:** Vehicle manufacturers, sometimes called Original Equipment Manufacturers (OEMs), may produce light-duty vehicles (e.g., cars, pickup trucks, vans, and sports utility vehicles) and medium-duty or heavy-duty vehicles (e.g., larger work trucks, construction trucks, semi-trucks, and buses). Bus manufacturers are interested in automation systems for transit buses and are engaged in various activities, including developing technologies in-house, reaching out to suppliers who are developing systems, and developing partnerships with other organizations to further research and development (R&D) in this area.

• **Supplier Firms:** Many companies develop, manufacture, and sell components or systems needed to enable automation (e.g., steering, braking, or sensing systems). Some of these suppliers have existing commercialized systems (either in buses or in heavy-duty trucks), and others are working to develop new systems to enable automation.

• **New Entrants:** Unlike the established bus manufacturers and suppliers, some companies are not part of the traditional transit bus supply chain and have more recently become involved in developing technologies for transit bus automation. This category includes providers of automated shuttles, transportation network companies (TNCs)\(^3\) with automated vehicle programs, and companies focused on other aspects of transit bus automation.

\(^3\) TNCs are firms that provide the service of matching passengers with drivers via mobile apps or websites. They are sometimes referred to as ride-hailing services and include companies such as Uber and Lyft.
Research staff engaged with company representatives to learn more about current and future products (including their characteristics, availability, and costs), research and commercialization activities, and commercialization challenges. Appendix A lists the organizations contacted for this report.

Vehicle automation is a rapidly-evolving field with multiple potential paths to commercialization. As a result, new technologies may be developed and commercialized following the publication of this report.

Report Organization
Section 2, “Market Assessment,” discusses relevant companies and product types along with their current market availability and future outlook. Section 3, “Selected Research and Pilot Project Summaries,” provides background on domestic and international efforts to develop and test transit bus automation systems. Section 4, “Conclusions,” provides concluding remarks, including key takeaways and potential implications for FTA and public transportation decision-makers.

4 Interviewees were asked to not share confidential business information during these meetings.
Market Assessment

Media coverage of new transit bus automation-related products or capabilities is often ahead of actual technology. Whereas there has been significant progress, development of automation systems for transit buses has been gradual, and such systems are not yet commercially available. Industry representatives stressed the importance of managing expectations and communicating to their transit agency customers the realities of the technology in terms of its availability, capabilities, and limitations.

To date, no suppliers offer a commercialized product for automating steering or braking in transit buses, although some of the components needed to support those systems exist. Similar systems have been developed and installed in other heavy-duty vehicles (e.g., commercial trucks, motor coaches, and school buses) to enable adaptive cruise control (ACC), automatic emergency braking (AEB), and lane-keeping functions. Some buses are using sensor-based, non-automated systems that provide warnings to drivers, although these systems have begun appearing in transit buses only relatively recently and are not particularly common; they are typically installed as retrofit systems rather than being integrated by bus manufacturers in the factory.

In addition to traditional transit buses, smaller automated shuttles are becoming more widely available for early pilot testing and demonstrations. Although numerous demonstrations and pilot projects feature these new types of vehicles, they are not currently produced at scale, and many models do not comply with Federal requirements such as the Federal Motor Vehicle Safety Standards (FMVSS) and the Americans with Disabilities Act (ADA). In addition, most automated shuttles are limited to carrying relatively few occupants and operating at low speeds (typically between 10 and 15 miles per hour), which may preclude many transit use cases. As a result of these challenges, most automated shuttle customers to date have purchased or leased vehicles for research purposes rather than to operate a service to meet an existing transportation need.

The following subsections discuss bus manufacturers, system suppliers, and new entrants (e.g., shuttle providers and TNCs). To the extent that products exist, they are identified and described at a high level. In cases in which a company does not have commercialized products but is engaged in relevant activities to develop or test automation systems, those activities are described.
Bus Manufacturers

The U.S. transit bus market is relatively small, with annual sales to transit agencies of between 8,000 and 9,000 transit buses, according to the National Transit Database (NTD). These sales are split roughly equally between models that are 30 ft or longer (including articulated buses) and shorter buses (e.g., smaller “cutaway” buses built on a truck chassis, such as those frequently used for paratransit service). For context, annual U.S. sales of Class 8 trucks (i.e., tractor-trailer trucks) are approximately 200,000 units, and annual U.S. sales of light-duty vehicles (e.g., cars, vans, pickup trucks, and sports utility vehicles) are approximately 17 million units. For each bus sold in the United States, there are more than 20 Class 8 trucks sold and approximately 2,000 light-duty vehicles sold.

Similarly, there are relatively few bus manufacturers that supply 30-ft or longer buses to transit agencies in the United States. The largest bus manufacturers are Gillig and NFI Group (parent of New Flyer), which together represent approximately 75% of all buses (not including cutaways) identified in the NTD in recent years. Among other manufacturers that provide buses to U.S. transit agencies are REV Group (parent of El Dorado, Champion, Goshen, and several other brands) and Volvo (parent of Nova Bus), which each sell 200–500 buses annually, as well as many even smaller companies—Blue Bird, BYD, Freightliner, Glaval, International, Proterra, Starcraft, Startrans, and Thomas Built—which together sell 200–300 buses to U.S. transit agencies annually.

The market for buses shorter than 30 ft in length is divided more evenly among different providers. REV is the largest manufacturer in this category, representing just over a quarter of all sales to transit agencies. Coach and Equipment, Elkhart Coach, Gillig, Glaval Bus, NFI (ARB OC), Starcraft, and Startrans each sell between 100 and 400 buses to transit agencies each year.

5 In addition to the buses sold to transit agencies that report in the NTD, transit buses are sold to other organizations (e.g., cutaway buses used for hotel shuttle service), and those buses are not included in this estimate. These numbers also do not include over-the-road coaches (e.g., large buses such as those used for intercity travel or to provide tours). NTD (2019), “2011–2017 Annual Database Revenue Vehicle Inventory,” National Transit Database, Federal Transit Administration, U.S. Department of Transportation, accessed March 2019, https://www.transit.dot.gov/ntd.

7 NFI Group was formerly known as New Flyer Industries. The company acquired the third largest U.S. bus manufacturer, North American Bus Industries (NABI), in 2013. It also acquired Motor Coach Industries (a motor coach manufacturer) in 2015, ARBOC Specialty Vehicles (a mid-sized bus company) in 2017, and Alexander Dennis (a British bus and coach manufacturer) in 2019.

8 Ibid., NTD.
Scalability of Automation Systems

Market scale becomes an issue with respect to developing or adapting automation systems for transit buses. In general, suppliers are not developing new automation systems primarily for transit buses because the potential addressable market is so much smaller than it is for other vehicle types. Instead, suppliers typically focus on developing new technologies for light-duty markets first, as the relatively large market means that a successful product may make it into tens or hundreds of thousands of vehicles each year, allowing the company to spread its R&D costs among many vehicles. After developing the initial technology, a supplier might seek to adapt it for medium-duty and heavy-duty trucks, which can be challenging, as the foundational systems (e.g., steering, brakes, and powertrain) for those vehicles may differ substantially from light-duty vehicles. Once the system is adapted for heavy-duty commercial trucks, the supplier may then consider working with a transit bus manufacturer to further adapt the system to function in a transit bus.

Beyond the cost of adapting a system for buses, additional testing and validation is needed each time the system is adapted for a new vehicle type, so adapting existing technology for buses can be costly. Supplier firms are interested in finding opportunities to implement their technologies, but if the technology requires major changes to be implemented in a new vehicle platform, it may be difficult to justify the R&D investment for small markets. The transit bus market faces other challenges with respect to implementing new technologies, including a lack of technologies applicable to transit bus service (e.g., most systems for heavy-duty vehicles focus on highway applications rather than slower, urban environments), relatively limited interest from transit agency customers, and high levels of customization requested by transit agency customers.

The high level of customization in the transit industry results from the unique sets of features that transit agencies request when placing orders for buses; thus, bus manufacturers adapt bus designs to meet the needs of each transit agency customer rather than producing a single, standardized bus. In some cases, this lack of standardization may cause issues when integrating an automation system, as placement of components or requirements for the components themselves may need to change depending on the other requirements of the transit agency, potentially requiring more testing and validation, and adding more cost to including a new system in a bus.

Applicability of Existing Technologies

Not all existing technologies will be applicable to transit service. Whereas some existing technologies may be compatible with the foundational systems of a transit bus, the applications may not be suited to the use cases that a bus encounters. In particular, many of the SAE Level 1 or Level 2 systems currently
available for heavy-duty vehicles are intended to operate at high speeds on divided highways, whereas most transit buses operate at low speeds on urban roads. Adapting those technologies for use on a transit bus, if possible, may represent a substantial R&D effort, requiring time and resources to implement.

Customer Interest
Many industry representatives noted that they have heard relatively little interest from transit agency customers regarding automation systems for transit vehicles, although a few noted growing interest in AEB systems to help prevent collisions with other vehicles or pedestrians. The high cost of production combined with limited customer interest means that suppliers and OEMs are hesitant to proactively design and introduce automation technology for transit buses. Demonstration of transit agency customer demand is needed to justify company investments. Even then, interested transit agencies may not be able to commit to a large number of equipped buses or may have a limited ability to pay for automation systems.

Technology Roadmaps
Although they may not be installing automation systems in their buses yet, bus manufacturers are talking to suppliers to assess when relevant automation systems are likely to be available. Most manufacturers are also developing or have already developed internal roadmaps for future technology. Often, these roadmaps do not contain firm dates, as there is uncertainty regarding the evolution of the technology. Compounding this uncertainty further, some systems require the development and implementation of other systems before commercialization will be feasible; for example, development of an electronically-actuated braking system for transit buses is a prerequisite for a transit bus AEB system.

Collaboration
Industry coordination is in a relatively nascent stage, with little to no coordination among bus manufacturers on non-competitive research, although some bus manufacturers are working with suppliers, transit agencies, or researchers at universities or other institutions. Relationships between bus manufacturers and suppliers are critical to testing and deployment, and one industry representative noted that fostering relationships with progressive transit agencies could enable more experimentation and progress. Some of the industry representatives suggested that greater manufacturer and supplier involvement in automation system standards through participation in committees could be beneficial for progress on developing automation systems for transit buses, and some companies are beginning to engage in these activities through organizations such as the American Public Transportation Association (APTA).
Some transit and transportation agencies are beginning to collaborate on procurement of automated buses; in May 2019, AECOM partnered with several such agencies to form the Automated Bus Consortium. The consortium is investigating the feasibility of implementing automated bus pilots and plans to use its combined purchasing power to accelerate deployment. The consortium expects to make an initial purchase of 75–100 full-sized, full-speed automated buses.

Automated Vehicle Activities

Some companies have made public announcements regarding their automated vehicle activities. In May 2017, Proterra announced a partnership with the University of Nevada, Reno (UNR), the Regional Transportation Commission of Washoe County (RTC), and other partners to test an automated bus on a route in Nevada. In October 2017, New Flyer opened its Vehicle Innovation Center in Anniston, Alabama. The center is designed to conduct R&D, education, and training on automated vehicle and other technologies, including electric buses and telematics systems. In January 2018, New Flyer announced a partnership with Los Angeles County Metropolitan Transportation Authority, which is evaluating safety technologies for buses as part of an FTA Safety Research and Demonstration (SRD) grant, although the project has primarily considered advanced driver assistance systems (ADAS) without an automation component. In May 2019, New Flyer announced additional automated vehicle research and development activities, including a partnership with Robotic Research LLC to develop and test an SAE Level 4 automated bus.

projects as well as international efforts are discussed in greater detail in Section 3 of this report.

System Suppliers

Whereas some of the companies that manufacture vehicles develop certain systems in-house, a substantial amount of system development occurs at supplier firms, who then sell those systems to vehicle manufacturers. These suppliers will typically provide the same or similar products to multiple vehicle manufacturers, taking advantage of economies of scale and spreading fixed costs (e.g., R&D costs or factory tooling costs) across many units. Many of these suppliers provide systems and components to both light-duty (e.g., passenger cars, pickup trucks, sports utility vehicles, and vans) and heavy-duty vehicles (e.g., commercial trucks and buses). With respect to automation, most of the research, development, and commercialization activity has been focused on light-duty vehicles. Multiple interviewees attributed the light-duty vehicle focus to the large market size (approximately 17 million units in recent years). At this scale, even equipping a small fraction of new vehicles with a particular system or component can mean tens or hundreds of thousands of units annually. Suppliers can provide a range of different systems, including ADAS, sensors, brake systems, and steering systems. The following subsections discuss companies providing these different systems and components.

Driver Assistance System Firms

Many firms provide ADAS for vehicles, including Autoliv, Bosch, Continental, Delphi, DENSO, Magna, Mobileye, ZF-TRW, and others. ADAS can include driver warnings (e.g., lane departure warning, forward collision warning, and blind spot monitoring) as well as low-level automation features (e.g., ACC, AEB, lane keeping, and automated parking). Some of these systems are compatible only with light-duty vehicles, but some companies have adapted their systems for heavy-duty vehicles as well. For instance, the Mobileye Shield+ system and the Protran Object Detection System can be used on heavy-duty vehicles, and both systems have been installed on buses. Both the Mobileye system and the Protran system provide warnings, but they do not include automation features.

Mobileye’s Shield+ system is a multi-sensor system that includes forward collision warning, pedestrian and cyclist collision warning, lane departure warning, headway monitoring and warning, speed limit indicator, intelligent high beam control, turn signal reminder, and low visibility indicator.\(^{15}\) The system’s pedestrian and cyclist collision warning system issues a warning to the bus operator when vulnerable road users (e.g., pedestrians or cyclists) are in the danger zones on the side or front of the bus, assisting the operator in avoiding

collisions. The system is mounted inside the vehicle and includes a sensor on the windshield, additional sensors for blind spot detection, and a display on the dash. The Mobileye Shield+ system only provides warnings to the driver and does not include any automated actuation.

The Protran Safe Turn Alert System is a passive system that provides an audible and visual warning to other road users (e.g., pedestrians at crosswalks) whenever the bus is making a turn. The system also provides an audible sound to remind the bus operator to look both ways when turning. Protran also offers a Blind Spot Awareness System that provides an audible and visual warning to the bus operators when objects are detected in blind spot areas. The system provides warnings to the operator through the illumination of lights located on the dashboard. The Protran systems provide warnings only to the other road users and the driver; neither system includes automated actuation.

Sensor Firms

The sensors needed to support automated transit buses may not differ from those used in other vehicle types. Depending on the system and approach, a system could use a variety of sensors, potentially including camera, infrared, lidar, radar, ultrasonic, inertial measurement unit (IMU), and global positioning system (GPS) technologies. A broad range of companies produce sensor units, and some sensors are relatively-mature commodities, whereas others are more actively being developed, improved, and scaled. Although automated transit buses may use the same sensors as other automated vehicles, the number and placement of sensors will likely vary due to the size and shape of the vehicle, use cases addressed (e.g., lower speeds in more urban environments), and considerations unique to transit bus operations (e.g., interior sensors may be needed to monitor status, location, and intent of passengers and additional sensors may be needed to monitor non-driving tasks, such as accessibility ramp deployment).

Brake Firms

No supplier firm currently produces an automated braking system specifically designed for transit buses. As heavy-duty vehicles, transit buses have brake systems that differ from those used in light-duty vehicles. Whereas light-duty passenger vehicles primarily use hydraulic braking systems, transit buses use pneumatic braking systems, so automated braking systems for light-duty vehicles will not be directly transferable to buses. Heavy-duty commercial trucks (i.e., Class 8 tractor-trailer vehicles) also use pneumatic braking systems, so automated braking systems designed for those vehicles may be more transferable to transit buses.

Several suppliers of brake systems for heavy-duty commercial trucks have been developing ADAS systems that include automated braking functionality. Although these systems have yet to be adapted for transit buses, they could potentially be a starting point for transit bus AEB or other more advanced features that include automated braking. Firms with commercialized automated braking systems for commercial trucks include Bendix (Wingman), Detroit Diesel (Detroit Assurance), and WABCO (OnGuard):

- **Bendix** purchased the VORAD collision warning system from Eaton in 2009, and since then has developed multiple systems of its own, including Wingman Active Cruise with Braking (ACB), Wingman Advanced, and Wingman Fusion.\(^\text{17}\) These systems combine radar, camera, and brake system data inputs to enable applications such as driver warnings, ACC, AEB, and other collision mitigation features. Bendix is currently launching Wingman Fusion 2.0, which has functions including highway departure braking, lane keeping, improved blind spot detection, and a higher level of collision mitigation. In the coming years, Bendix plans to add support for pedestrian and bicyclist detection.

- **Detroit Diesel** has a system called Detroit Assurance, which is a radar-based (with optional windshield-mounted camera) system that interfaces with brake, engine, and transmission systems.\(^\text{18}\) Features include AEB (full or partial braking), adaptive cruise control, and driver warnings (e.g., tailgate warning and lane departure warning). Detroit Assurance 5.0 will be available during the second half of 2019, and it will combine inputs from radar and camera systems to enable a range of applications, including lane keep assist, ACC, and AEB.

- **WABCO** has developed a family of driver assistance systems under the OnGuard brand (e.g., OnGuard, OnGuardACTIVE, and OnGuardMAX).\(^\text{19}\) Its products include features such as AEB (to avoid collisions with pedestrians and other vehicles), lane keeping, and adaptive cruise control, as well as warning systems for lane departure, turning, pedestrian collision, and blind spot detection.

In general, applications for commercial trucks include warnings for following distance and collisions as well as automated actuation for ACC and AEB. Each system supports different types of warnings and operates within different parameters. The currently-available systems have minimum speed limitations (e.g., 15 or 20 mph); these limits may limit application for buses, which, depending

on the use case being considered, may need braking functionality at lower speeds. In addition, current systems may have little or no warning or actuation for pedestrians or animals, may not reliably track objects (e.g., motorcycles, mopeds, and bicycles), and may not address oncoming vehicles or cross traffic. Detection may be impaired by weather conditions (e.g., snow or heavy rain) or other environmental characteristics.

Steering Firms
No supplier firm currently produces an automated steering system specifically designed for transit buses. As with brake systems for heavy-duty commercial trucks, steering systems in heavy-duty vehicles differ from those used light-duty vehicles. Heavy-duty vehicles, such as transit buses and commercial trucks, use hydraulic steering systems, because current electric power steering systems cannot provide adequate torque on larger vehicles. Several suppliers, including Bendix, Bosch, Knorr-Bremse (formerly Tedrive), Nexteer, WABCO, and ZF TRW, have commercialized steering products to create electro-hydraulic power steering systems, which can allow the electronic actuation of heavy-duty vehicle steering systems through the addition of equipment to the steering column, large hydraulic gear, or rotary valve. These systems are being used in medium- and heavy-duty trucks to provide ADAS features such as lane keep assist and lane centering. As with automated braking systems, the currently-available heavy-duty vehicle solutions are geared towards higher-speed use cases and may not be applicable to some of the lower-speed use cases of transit buses.

New Entrants
In addition to traditional bus manufacturers and systems suppliers, many new entrants are offering shared rides in automated vehicles. These new entrants include low-speed automated shuttle companies as well as transportation network companies and other startup or technology firms.

Automated Shuttle Firms
Many companies provide automated shuttles, including 2getthere, Coast Autonomous, EasyMile, Local Motors, May Mobility, Navya, Optimus Ride, Ridecell (formerly Auro Robotics), and Robotic Research. Automated shuttles are characterized as vehicles that:

- Use SAE Level 4 automated driving systems (intended for use without a driver, though most current implementations retain an on-board attendant)
- Have an operational design domain (ODD) restricted to protected and less-complicated environments
- Travel at low speeds (typical cruising speeds around 10–15 mph)
• Are used to provide shared service (typically designed to carry multiple passengers, including unrestrained passengers and standees)
• Operate in a shared right-of-way with other road users, either at designated crossing locations or along the right-of-way itself.20

Companies appear to be taking two distinct approaches in developing automated shuttles. Some are designing automated shuttles from the ground up, developing both the physical vehicle platform as well as the automated driving system. Others are adapting automated driving systems to existing, commercially-available platforms (including shuttle platforms such as the Polaris GEM e6/e4 or Cushman Shuttle 6 and light-duty vehicles such as the Chrysler Pacifica van or the Nissan NV200 van) and, therefore, are focusing more specifically on the hardware and software necessary to enable automated driving.

Many companies are developing and testing automated shuttles. Although not a comprehensive list, some of the companies providing automated shuttles include the following:

• 2getthere has been providing automated shuttles for 20 years, starting with its system in Rotterdam, Netherlands, which began operation in 1999.21 Shuttles from 2getthere typically operate on dedicated lanes and use magnets embedded in the roadway for guidance. The Group Rapid Transit (GRT) shuttle is the latest vehicle produced by 2getthere, and it can carry up to 24 passengers. Later this year, it will replace the older vehicles in Rotterdam and the existing route will be extended to provide service in mixed traffic. The company does not currently operate shuttles in the United States but has been in conversations with potential U.S. clients and has established a relationship with a contract manufacturer (Oceaneering International) to produce vehicles domestically.

• Coast Autonomous has produced its own shuttle, the Coast P-1, which has been used in demonstrations in New York and Tampa.22 In its most recent demonstration during February 2019, the Coast P-1 shuttle operated on the campus of the University of South Florida (USF), where the Center for Urban Transportation Research (CUTR) is working with Coast Autonomous to demonstrate the shuttle along a pedestrian walkway. The

Coast P-I shuttle can travel up to 25 mph and can accommodate up to 8 seated passengers and 4 standees.

- **EasyMile** is a French company that designed the EZ10 shuttle and provides automation technology (the vehicle itself is produced by Ligier). The EasyMile EZ10 can travel up to 25 mph and can accommodate up to 6 seated passengers and 9 standees.\(^{23}\) It was one of the two vehicle models used in the CityMobil2 project, which conducted demonstrations across several European cities between 2014 and 2016. Since those initial tests, the EasyMile EZ10 has been tested in 27 countries, operating on both public and private roads in mixed traffic and in varied weather. It also has been tested at several sites in the United States. Some of the organizations that have used EasyMile shuttles in pilot projects include the City of Arlington (TX), Babcock Ranch (FL), Contra Costa Transportation Authority (CA), Denver Regional Transportation District (CO), Jacksonville Transportation Authority (FL), Minnesota Department of Transportation (MN), Texas Southern University (TX), and Utah Department of Transportation (UT). EasyMile has a North American headquarters in Denver, Colorado. In Q4 2019, EasyMile announced that it plans to release a third generation of the EZ10 shuttle with several new features, including seat belts and ADA-compliant wheelchair anchor points.\(^{24}\)

- **Local Motors** is a U.S. company that uses 3D-printing methods to produce the Olli shuttle.\(^{25}\) The Olli can travel up to 12 mph and accommodate up to 8 passengers. The shuttle debuted in June 2016 and provided rides around the Local Motors facility in National Harbor, Maryland. In the summer of 2018, the University of Buffalo began testing an Olli shuttle on its campus, and in September, Local Motors launched the “Olli Fleet Challenge” with winners in Phoenix, Arizona and Sacramento, California receiving a fleet of Olli shuttles for proposed pilot projects. In December 2018, Local Motors announced a similar challenge for the Washington, DC area.

- **May Mobility** is based in Ann Arbor, Michigan, and equips Polaris GEM shuttles with automation equipment.\(^{26}\) The Polaris GEM shuttles can carry 6 seated passengers and operate at a maximum speed of 25 mph. In addition to adding the equipment necessary for automation, May Mobility redesigns certain aspects of its vehicles, including modifications to the doors, seating

\(^{26}\) May Mobility (2019), May Mobility website, https://maymobility.com/.
configuration, and steering mechanism, as well as installation of large dashboard displays. May Mobility’s first pilot occurred in Fall 2017, and the company is currently operating shuttles in Detroit, Michigan; Columbus, Ohio; and Providence, Rhode Island, with multiple vehicles at each site. In July 2019, May Mobility plans to begin operating in Grand Rapids, Michigan.

- **Navya** is a French company that produces the Navya Autonom Shuttle (formerly the Navya Arma). The Autonom Shuttle can travel up to 25 mph and accommodate up to 11 seated passengers and 4 standees. Navya shuttles have been used in pilots in various countries around the world, and domestically, they have been used in pilots where they operated in mixed traffic on roads in Las Vegas, Nevada and Ann Arbor, Michigan. The company currently has operational manufacturing facilities in Lyon, France and Saline, Michigan.

- **Optimus Ride** equips Polaris GEM shuttles with automation equipment. The Polaris GEM shuttles can carry 6 seated passengers and operate at a maximum speed of 25 mph. The initial pilot site for Optimus Ride was a residential development in Weymouth, Massachusetts, where the shuttles operated in mixed traffic, providing service to a local transit stop. In February 2019, Optimus Ride announced that it would be beginning a second pilot in Reston, Virginia later in the year.

- **Ridecell** acquired Auro Robotics in October 2017. Prior to its acquisition, Auro equipped Polaris GEM shuttles with automation equipment. The Polaris GEM shuttle used could carry 4 seated passengers and operate at a maximum speed of 25 mph. Auto Robotics’ major pilot site was on a pedestrian walkway on the campus of Santa Clara University. Under Ridecell, Auro Robotics still focuses on automation for low-speed first/last-mile use cases and offers integration with the Ridecell mobility platform for fleet management.

- **Robotic Research** modified two Cushman Shuttle 6 vehicles for the Applied Robotics for Installations and Base Operations (ARIBO) project at

Fort Bragg, which operated during 2014–2017. In Fall 2017, those shuttles were relocated to a test site in Greenville, South Carolina, where they were used to support the initial phase of a project funded through an Advanced Transportation and Congestion Management Technology Deployment (ATCMTD) grant. Robotic Research also partnered with Local Motors to provide a new automation system for the Olli shuttle.

TNCs and Technology Firms

Shared rides in passenger vehicles have become more common, and, in many cases, transit agencies are considering partnerships with TNCs to augment transit service. TNCs Uber and Lyft have both been testing automated vehicles and have used them to provide rides to customers of their on-demand services. Uber has tested vehicles in Phoenix, Arizona; Pittsburgh, Pennsylvania; and San Francisco, California. Lyft has also tested automated vehicles in San Francisco and has partnered with Aptiv/nuTonomy to provide automated vehicle rides to TNC users in Boston, Massachusetts and Las Vegas, Nevada. In addition, some technology companies (e.g., Drive.ai and Waymo) have begun operating shared ride services using automated vehicles, including Waymo in Phoenix and Drive.ai in Arlington and Frisco, Texas. As part of its efforts in Phoenix, Waymo has partnered with the local transit agency, Valley Metro, to provide rides to transit agency employees, with eventual plans to provide rides to users of Valley Metro’s RideChoice program. Although the systems used by these companies are providing rides to customers, the technology is still being evaluated and further developed; it is not yet commercially available.

Because the market for automated transit buses is relatively nascent, information on R&D and pilot activities can provide insight into systems of interest, which may be further developed into commercialized products in the future. The largest number of projects in this area focus on automated shuttles; but, as many of the companies active in that space have already been discussed in the previous section, this section focuses primarily on projects involving larger buses. For the most part, the intent of the projects covered in this section is primarily to demonstrate proof-of-concept and gather data. The products being tested may never enter revenue service beyond initial demonstrations, but they may represent an early stage in the development of future products.

Some automated transit bus projects have been announced in the United States, but they tend to involve lower levels of automation or are still at relatively early stages of development. Domestic tests have also included ADAS for transit buses that does not include any automated actuation; whereas such technologies are outside the scope of this report, they may represent precursor systems. Examples of such ADAS testing include the Minnesota Valley Transit Authority (MVTA) Driver Assist System (DAS) for Bus-on-Shoulder (BOS) operations demonstration and the Greater Cleveland Regional Transit Authority (GCRTA) Enhanced Transit Safety Retrofit Package (E-TRP) project. Some more ambitious automated transit bus projects are taking place around the world, with the majority of the activity centered on East Asia and Europe. The following summarizes several of these projects in the United States and abroad.

36 Ibid., Cregger et al.
Domestic Projects

Oregon – Vehicle Assist and Automation (VAA) Demonstration

In 2008, FTA and the Intelligent Transportation Systems Joint Program Office (ITS JPO) awarded $1.9 million to the California Department of Transportation (Caltrans) for the “Pilot Program to Demonstrate the Benefits of Vehicle Assist and Automation Applications for Full-Size Public Transit Buses.” In addition to the $1.9 million, Caltrans provided a $1.5 million match. The project included Lane Transit District (LTD) in Oregon, among other partners. The objective was to test lateral guidance/control and precision docking on a 1.5-mile segment of LTD’s Emerald Express (EmX) Bus Rapid Transit (BRT) route with an equipped 60-ft articulated bus. The VAA system used two sensing technologies—magnetic markers as the primary system and differential global positioning system (DGPS) with inertial navigation sensors as the secondary back-up system. The demonstration of the VAA in revenue service at LTD began on June 10, 2013, and continued on-and-off until the project was completed in February 2015.39

Washington – Active Safety-Collision Warning Pilot

Beginning in January 2016, the Washington State Transit Insurance Pool (WSTIP) and the University of Washington conducted an 18-month project to test bus collision avoidance warning systems (CAWS).40 Commercially-available CAWS were modified and adapted for use on standard transit buses and installed on 38 buses operating at 8 transit agencies, including 7 buses at Pierce Transit. The buses used included models from Gillig, New Flyer, and Orion. Each bus also was equipped with a cellular telematics unit and supplemental cameras with video recording. Buses were operated in revenue service for several months, including a three-month testing and data collection period.

In January 2017, FTA awarded Pierce Transit a $1.66 million FTA SRD grant to fund a $2.9 million project to implement and research collision warning and automated braking technology in buses.41 As part of the project, an AEB system will be installed on up to 30 Pierce Transit buses. Initial testing at Virginia Tech Transportation Institute (VTTI) used simulated pedestrian and vehicle targets and included more than 150 scenarios with different driving maneuvers, weather

conditions, and lighting. VTTI is also assisting with the evaluation of the impact of the AEB system on passengers—two buses will have cameras installed for passenger monitoring. The University of Washington will be conducting validation (false positives/negatives) on the AEB system using front mounted cameras on five of the buses. After completion of non-revenue service testing in Summer 2019, a revenue service field demonstration will be conducted (initially in stealth mode to gather data) and operate through April 2021.

Nevada – Automated Bus Research
In 2017, Proterra announced an automated bus pilot, working with Reno’s transportation agency and engineers, roboticists, and artificial intelligence experts at the Living Lab Coalition at UNR to collect data on how to integrate automated public transit buses into cities. Using a variety of sensors, Proterra and its partners collected data along the roadway and used it to develop a set of perception algorithms. The pilot is studying the positioning and orientation of subject vehicles, pedestrian and cyclist behavior, and the performance and coordination of multiple vehicles and traffic control systems. Other partners on the project include RTC, the Governor’s Office for Economic Development, City of Reno, City of Sparks, Carson City, Nevada Department of Transportation, Nevada Department of Motor Vehicles, West Virginia University, and Fraunhofer Institute for Transportation and Infrastructure Systems in Germany. Ultimately, the goals of this project are to improve sensors to eliminate blind spots, provide support in degraded situations (e.g., night-time driving or bad weather), and reduce brake-time response.

International Projects
China – Yutong Automated Bus Demonstration
In September 2015, Chinese bus manufacturer Yutong conducted a demonstration of its automation system on a 20-mile stretch of public roads through an urban environment from Zhengzhou to Kaifeng. The trip involved automated lane changes, overtaking other vehicles, and responding to traffic lights (26 in total) without human intervention. The bus was equipped with a lidar unit and cameras on each side. Yutong uses Mobileye technology in all of its electric buses and has partnered with Mobileye to develop additional transit automation features for its buses.

Netherlands – Mercedes-Benz “Future Bus” Testing

In July 2016, the Mercedes-Benz Future Bus with CityPilot was demonstrated in the Netherlands, running along the 12-mile BRT route between Schiphol airport and the town of Haarlem. The route included traffic lights, tunnels, and required the bus to navigate around people. The technology of the CityPilot in the Mercedes-Benz Future Bus was based on that of the automated Mercedes-Benz Actros truck with Highway Pilot presented in 2014. The bus used an SAE Level 2 system (operator in the driver seat and ready to reassume control) with automated lane-keeping, acceleration, and braking. The system was also designed to react to traffic lights, use precision docking at stops, and automatically open the doors for boarding and alighting passengers. The bus had a top speed of 43 mph and was programmed to operate in bus-only lanes.

The integrated technology systems included cameras, radar sensors, and GPS, which were used for localization, object detection, and monitoring factors such as road surface quality, bus movement, and driver actions. Data fusion was used to combine the various sensor inputs and provide a finalized image of the location and vicinity of the bus. The Future Bus was capable of recognizing changes in traffic lights phase and identifying pedestrians, stopping to allow their passage and automatically opening doors for them at bus stops.

China – Alphaba Bus Demonstration

In December 2017, four automated Alphaba minibuses began operating on the roads in Shenzhen, China. The buses were developed by Shenzhen Haylion Technologies and manufactured in China. They cost 500,000 yuan ($76,000) each. Shenzhen Bus Group Co is the operator of Alphaba buses, which can carry up to 19 passengers and operate on public roads, serving 3 stops in Shenzhen's Futian District along a 1.2 km (0.75 mi) route. The vehicles can reach speeds of 40 kph (25 mph), completing the route in approximately 5 minutes. The buses are equipped with lidar, cameras, infrared sensors, radar, and GPS. In the first four months of private testing prior to the pilot, the buses logged 8,000 km (5,000 mi). If approved, the buses may be used in revenue service operations, and Shenzhen Bus Group has stated that it plans to begin similar demonstrations in 10 other Chinese cities following the completion of the initial pilot.

48 Ibid., Daimler.
Japan – Automated Driving for Universal Services

The Strategic Innovation Program – Automated Driving for Universal Services (SIP-adus) is a five-year joint research program on connected and automated driving led by the Japanese government that began in 2014. The project consists of five themes: dynamic map, human-machine interface (HMI), cybersecurity, pedestrian collision reduction, and next-generation transport. Automated shuttles are being tested in rural areas in Japan as a mobility solution for older adults. Testing began in 2018 in Okinawa. Bosch is collaborating on the dynamic map field tests. Technology evaluations are being conducted for lane-maintenance speed control, precision docking, narrow road “alternating passage” capability, and location-detection tests using GPS to verify navigation and distance-measurement systems.

Japan – Haneda Airport Automated Bus Demonstration

In January 2019, All Nippon Airways partnered with NEC, SB Drive, and Aichi Steel to launch a 10-day demonstration of an SAE Level 3 automated bus at the Haneda Airport. The system is supervised by an on-board operator and a remote dispatcher. The bus holds a maximum of 10 people and has a top speed of approximately 20 mph on its 1/3-mile route connecting two terminals. The system uses GPS and magnetic markers on the road for localization. Officials plan to use the buses during the 2020 Olympics. In addition to ANA’s demonstration at Haneda Airport, similar testing will also take place at airports in Narita, Sendai, and Nagoya.

Sweden – Volvo Automated Bus Projects

In June 2018, Volvo debuted an automated bus in conjunction with the Volvo Ocean Race competition in Gothenburg, Sweden. The prototype was based on Volvo’s commercially-available 40-ft electric city bus and was featured in

demonstration events. Volvo announced that the bus would be featured in the “Autonomous City Buses” and “Next-Generation Travel and Transport” projects in Sweden over the following two years. Potential applications to be explored with the automated bus include BRT, depot operations, and platooning.

Taiwan – LILEE Systems Automated Bus Demonstration
LILEE Systems is operating a retrofitted 30-ft diesel automated bus that is providing service to passengers on 2.9 km (1.8 mi) route along public roads in Taichung City, Taiwan. Service began on December 21, 2018, and continued until January 20, 2019. Over the course of the pilot, the bus carried more than 7,500 riders on a fixed route on regular streets that were open to traffic. The demonstration was part of the city government’s Shuinan Smart City automated vehicle project. Partners included Wistron, iAuto, Mobiletron, THI Consultants, Industrial Technology Research Institute (ITRI), and Green Transit Company (a local bus operator).

China – Baidu Apolong Buses
Baidu has been producing a fleet of automated minibuses as part of the Baidu Apollo program. The Apolong buses are being manufactured by King Long and can carry up to 14 passengers each. The latest version of the program, Apollo 3.0, supports multiple automated vehicle applications, including valet parking, automated mini buses, and automated microcars. In July 2018, Baidu announced that 100 Apolong buses had been produced. Baidu plans to use its vehicles to provide bus service in the Chinese cities of Beijing, Shenzhen, Pingtan, and Wuhan. Outside of China, Baidu is partnering with SB Drive to bring Apolong buses to Japan in 2019.

Singapore – Automated Bus Demonstration
Singapore’s Land Transport Authority (LTA) and Nanyang Technological University (NTU) signed an agreement in October 2016 to equip two hybrid electric buses with sensors and other capabilities to enable automated driving.

The roads between NTU and CleanTech Park (located in the Jurong Innovation District) were identified as potential test routes for the demonstration. In January 2018, Volvo announced that it had signed an agreement with NTU to provide automated electric buses to begin testing in Singapore starting in early 2019. In March 2019, Volvo unveiled the 40-ft, 85-passenger Volvo 7900 Electric bus that it has been testing at the Centre of Excellence for Testing and Research of Autonomous Vehicles (CETRAN), noting that it will soon begin testing at the NTU campus. The bus is equipped with a sensor suite that includes four lidar units, 360-degree camera coverage, and an advanced GPS that is augmented with input from an IMU.

Scotland – Automated Bus Demonstration

In 2018, the United Kingdom government announced a £4.35 million award through Innovate UK to demonstrate five SAE Level 4 automated buses. Bus manufacturer Alexander Dennis Limited (ADL) will be providing the ADL Enviro200 buses, which can carry up to 42 passengers. The buses will provide service every 20 minutes along a 14-mile route between Fife and Edinburgh across the Forth Road Bridge. In addition to vehicle manufacturer ADL, other partners include the Transport Scotland, Stagecoach, Fusion Processing, ESP Group, Edinburgh Napier University, and the University of the West of England. In compliance with national regulations, a driver will be onboard ready to take control of the bus while it is in operation on public roads. When the bus is not in service, the automation system may be used for parking and moving the vehicle into the fueling station and bus wash. The project began depot testing in March 2019, and on-road testing will begin in 2020, with the pilot scheduled to end in late 2021.

Sweden – Scania and Nobina Automated Bus Demonstration

Starting in 2020, bus manufacturer Scania and bus operator Nobina will be piloting two automated Scania Citywide LF buses on a three-mile route with

four stops along dedicated bus lanes near Stockholm, Sweden, between the residential area of Barkarby and the Akalla metro station. Initial stages of the demonstration will be conducted with no riders aboard the buses. When in service, the buses will have a safety driver onboard, and the automation system will be engaged for a fifth of the route, with the driver manually operating the bus for the remainder of the route.

Australia – Sydney Automated Bus Demonstrations
Transport for New South Wales (TfNSW) is considering a demonstration of full-sized automated commuter buses on routes around Sydney, Australia. It has begun a market sounding process to gauge interest from consortia made up of organizations such as public transport operators, bus manufacturers, and technology companies. Demonstration arrangements with the selected consortium are expected to begin before the end of 2019 and may run for up to three years. Previous projects in New South Wales had demonstrated smaller automated shuttles from EasyMile (Coffs Harbour and Armidale) and Navya (Sydney Olympic Park).

Conclusions

The automated transit bus market is still in its infancy; although many concept vehicles and systems exist, and some have been developed into prototypes, few have been commercialized. Media coverage may add to the confusion if it does not communicate realistic timelines for implementation or clearly differentiate conceptual ideas and prototypes from commercially-available products. This market assessment is intended to help appropriately manage expectations and communicating a realistic depiction of the current state of the industry with respect to the availability, capabilities, and limitations of automated transit bus technologies. It aims to inform FTA staff, transit agency stakeholders, and others interested in understanding the market. Key findings from the report include the following:

- **Media coverage related to new transit bus automation products or capabilities is often ahead of actual technology development.** Relatively few automation features are available for transit buses, although smaller automated shuttles are becoming increasingly available. At this point, the transit bus automation systems that have been developed are in the pilot testing stage or earlier stages of development. Systems are not broadly available for revenue service, and it will likely be years before systems are available in the quantities and with the capabilities needed to support broader deployment.

- **Technology costs are unknown at this point.** Given that automation systems SAE Level 1 or higher exist only as prototypes (if they exist at all), pricing is typically not available. Even for low-speed automated shuttles, prices are not firmly established and are subject to change.

- **Current automation technology for other vehicle types addresses use cases that may have limited applicability for transit service.** Many of the lower-level automation systems currently available for heavy-duty vehicles are intended to operate at high speeds on divided highways, whereas most transit buses operate at low speeds on urban roads. In addition, current sensing technology has too many false positives to be implemented in transit operations.

- **Bringing automation technology into buses is difficult due to the relatively low volumes and high level of customization in the current domestic bus market, as well as a perceived lack of interest from transit agency customers.** The relatively small market and high level of customization from transit agency to transit agency reduces the number of vehicles that R&D, testing, and validation costs can be spread
over, resulting in high costs on a per unit basis, disincentivizing investment in new products and technologies and limiting commercialization.

- **Bus manufacturers are working with suppliers to understand the development timelines for new features and have high-level roadmaps for their introduction.** These roadmaps are internal and may not contain firm dates due to uncertainty surrounding key aspects of technology development. Conversations between bus manufacturers and suppliers are ongoing, and in some cases they are working together to enable new technologies.

- **There is a high degree of uncertainty regarding other issues, including pedestrian and occupant behavior and safety, insurance and liability, operator acceptance, and new service models.** There are additional needs in the areas of communication and education. More research may be needed to resolve some of these issues, and outreach activities may be needed to ensure that all relevant stakeholders understand the capabilities and limitations of any new system implemented.

- **Industry representatives noted that demonstration and pilot programs are essential to making technological progress and answering questions on the feasibility of automation systems for transit buses.** Multiple interviewees noted that the high cost of pilots and demonstrations is prohibitive, and Federal grants and programs help enable research, demonstration, and implementation.

Obtaining an accurate assessment on the state of the market is difficult, but reliable information is necessary for planning longer-term initiatives related to the procurement, testing, and deployment of automated transit buses. Various organizations are beginning to develop committees and working groups to help facilitate information sharing among members. As the industry matures and more products enter the market, more information should become available.
Companies Contacted

The Research Team contacted several companies over the course of this research. The team scheduled meetings with the following bus manufacturers, suppliers, and new entrants listed below. Separate questionnaires were developed for companies representing different categories so the conversations could be better tailored to their roles and experience.

Bus Manufacturers

• Gillig Corporation
• New Flyer
• Proterra
• Volvo (Nova Bus)

Suppliers

• Bendix
• Continental
• Mobileye
• ZF / TRW

New Entrants

• 2getthere
• Aptiv / nuTonomy
• EasyMile
• Local Motors
• May Mobility
• Navya
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>adaptive cruise control</td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disabilities Act</td>
</tr>
<tr>
<td>ADAS</td>
<td>advanced driver assistance systems</td>
</tr>
<tr>
<td>ADL</td>
<td>Alexander Dennis Limited</td>
</tr>
<tr>
<td>AEB</td>
<td>automatic emergency braking</td>
</tr>
<tr>
<td>ANA</td>
<td>All Nippon Airways</td>
</tr>
<tr>
<td>APTA</td>
<td>American Public Transportation Association</td>
</tr>
<tr>
<td>ARIBO</td>
<td>Applied Robotics for Installations and Base</td>
</tr>
<tr>
<td>ATCMTD</td>
<td>Advanced Transportation and Congestion</td>
</tr>
<tr>
<td>BOS</td>
<td>Bus-on-Shoulder</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>Caltrans</td>
<td>California Department of Transportation</td>
</tr>
<tr>
<td>CAWS</td>
<td>collision avoidance warning systems</td>
</tr>
<tr>
<td>CETRAN</td>
<td>Centre of Excellence for Testing and Research of</td>
</tr>
<tr>
<td>CUTR</td>
<td>Center for Urban Transportation Research</td>
</tr>
<tr>
<td>DAS</td>
<td>Driver Assist System</td>
</tr>
<tr>
<td>DGPS</td>
<td>differential global positioning system</td>
</tr>
<tr>
<td>E-TRP</td>
<td>Enhanced Transit Safety Retrofit Package</td>
</tr>
<tr>
<td>EmX</td>
<td>Emerald Express</td>
</tr>
<tr>
<td>FMVSS</td>
<td>Federal Motor Vehicle Safety Standards</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>GCRTA</td>
<td>Greater Cleveland Regional Transit Authority</td>
</tr>
<tr>
<td>HMI</td>
<td>human-machine interface</td>
</tr>
<tr>
<td>IMU</td>
<td>inertial measurement unit</td>
</tr>
<tr>
<td>ITRI</td>
<td>Industrial Technology Research Institute</td>
</tr>
<tr>
<td>ITS JPO</td>
<td>Intelligent Transportation Systems Joint Program</td>
</tr>
<tr>
<td>LTA</td>
<td>Singapore's Land Transport Authority</td>
</tr>
<tr>
<td>LTD</td>
<td>Lane Transit District</td>
</tr>
<tr>
<td>MVTA</td>
<td>Minnesota Valley Transit Authority</td>
</tr>
<tr>
<td>NTD</td>
<td>National Transit Database</td>
</tr>
<tr>
<td>NTU</td>
<td>Nanyang Technological University</td>
</tr>
<tr>
<td>ODD</td>
<td>operational design domain</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturers</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RTC of Washoe County</td>
<td>Regional Transportation Commission of Washoe</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ACC</td>
<td>adaptive cruise control</td>
</tr>
<tr>
<td>SIP-adus</td>
<td>Strategic Innovation Program – Automated Driving</td>
</tr>
<tr>
<td>SRD Program</td>
<td>Safety Research and Demonstration Program</td>
</tr>
<tr>
<td>STAR Plan</td>
<td>Strategic Transit Automation Research Plan</td>
</tr>
<tr>
<td>TfNSW</td>
<td>Transport for New South Wales</td>
</tr>
<tr>
<td>UNR</td>
<td>University of Nevada, Reno</td>
</tr>
<tr>
<td>USDOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>USF</td>
<td>University of South Florida</td>
</tr>
<tr>
<td>VAA</td>
<td>Vehicle Assist and Automation</td>
</tr>
<tr>
<td>WSTIP</td>
<td>Washington State Transit Insurance Pool</td>
</tr>
</tbody>
</table>
References

Transit Bus Automation Market Assessment, Update through April 2020

The Federal Transit Administration (FTA) Transit Bus Automation Market Assessment report examined conceptual ideas, prototypes, and commercially-available products related to automated vehicle technologies for transit bus operations. Given the high level of interest in this area, it is anticipated that this market will continue to evolve. To provide the transit industry with reliable information, FTA will continue to monitor pilot testing and availability of products through publicly-available information and will periodically summarize new information.

This initial update provides additional information on transit bus automation technologies and projects, including new developments that have occurred since the original Market Assessment report was written. This addendum builds upon the information provided in the original report and updates it through April 2020. As with the original report, it considers transit bus automation systems across all levels of automation (SAE Levels 0–5)\(^2\) and considers a broad definition of bus that includes a range passenger capacities and vehicle designs (e.g., ranging from smaller shuttle vehicles to 40-ft transit buses and longer articulated buses).

New pilot and demonstration activities continue to be announced, but commercialization timelines are still uncertain. See Key Findings for a discussion of activity during this period. This update includes a summary of relevant U.S. Department of Transportation (USDOT) activities, other domestic activities, and international projects. Note that although the original report and this update include information on activities related to the development and testing of automated transit bus systems, neither are intended to be comprehensive—information on activities is meant to give a sense of the applications being

1 Due to the COVID-19 pandemic response, many automated vehicle test activities have been suspended, especially those that focused on providing rides to passengers. At this point, it is difficult to determine the long-term implications for projects that are in progress or that have not yet started; this report may not fully capture the extent of those changes.

2 SAE Level 0 systems include both systems without any automation that provide warnings to drivers (e.g., collision warning systems) and systems that provide momentary automated control of the vehicle (automatic emergency braking). Systems that provide momentary automated control of the vehicle are considered within scope for this report, although some systems that do not include automation (e.g., products from Mobileye and Protran) are also mentioned as potential precursors to automation systems. SAE International (2018), “J3016_201806: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,” SAE International Standard, <https://www.sae.org/standards/content/j3016_201806/>.
addressed and the developmental stage of the technology. As with the original report, whereas this addendum references company and product names, they are included only for illustrative purposes and do not represent an endorsement.

Relevant USDOT Activities

Integrated Mobility Innovation

The Integrated Mobility Innovation (IMI) Demonstration Program integrated three areas of research interest (Mobility on Demand, Transit Bus Automation, and Mobility Payment Integration) into a single Notice of Funding Opportunity (NOFO) to allow applicants to comprehensively plan multiple areas of mobility research, including two of the automated transit bus demonstrations identified in the Strategic Transit Automation Research (STAR) Plan (Demonstration 1: Automated Advanced Driver Assistance Systems for Transit Buses and Demonstration 2: Automated Shuttles). In March 2020, FTA announced selections of 25 projects in 23 states, for a total award of $20.3 million. Of those selections, slightly more than $4 million will be awarded to three projects that test and evaluate transit bus automation technologies, including the following:

- **Connecticut Department of Transportation (CTDOT)** – This project will receive an award of $2,000,000 in Federal funding to test automated, electric buses on the CTfastrack bus rapid transit (BRT) corridor to improve safety for riders with disabilities. Precision automated docking and platooning applications will address wide platform gaps and other unsafe situations while also reducing delays.

- **City of Columbus, Indiana** – This project will receive an award of $320,620 in Federal funding to develop an automated shuttle circulator to increase transit options and reduce wait times. The routes will serve mainly riders who are low-income, older adults, and people with disabilities.

- **City of Arlington, Texas** – This project will receive an award of $1,698,558 in Federal funding to integrate automated vehicles into its existing on-demand system operated with the Via ride-sharing service. The service will include a wheelchair accessible vehicle and allow University of Texas at Arlington students to ride fare-free.

STAR Plan Strategic Partners

The STAR Plan identified a Strategic Partnerships work area, which is intended to improve the quality and usefulness of research by other actors.

and disseminate findings to a broad community, expanding participation of providers and suppliers, according to the STAR Plan, “Strategic partnerships will leverage research projects and investments led by other agencies. FTA funding and technical assistance will supplement partners’ deployment and evaluation activities, so research topics of interest to FTA may be cost-effectively added and research findings can be disseminated,” FTA has identified three initial Strategic Partnerships, including the following:

- **Valley Metro, Phoenix, Arizona** – This project involved a partnership with Waymo to provide automated vehicle rides to Valley Metro employees beginning in September 2018. In Fall 2019, the testing expanded to include a selected group of RideChoice program users (RideChoice provides subsidized on-demand rides to paratransit users).

- **Access Services, Los Angeles** – This project will test automated vehicles to provide shuttle service between a light rail station and the Veterans Administration (VA) hospital.

- **Port Authority of New York and New Jersey** – This project will test lateral lane-keeping and bus platooning to improve operations and reduce headways between buses as they traverse Exclusive Bus Lane (XBL) between the Lincoln Tunnel and the New Jersey Turnpike.

Automated Driving Systems Demonstration Grants

In September 2019, U.S. Transportation Secretary Elaine L. Chao announced $60 million in funding for the Automated Driving Systems (ADS) Demonstration Grants, which are intended to promote the testing and integration of automated vehicles into the transportation system and address concerns about safety, security, and privacy. USDOT selected eight proposals spread across seven states, including three projects with transit bus-related components:

- **City of Detroit** – This project was selected to receive an award of $7,500,000 in Federal funding. In its early stages, the project team will implement the Cooperative Automation Research Mobility Applications

(CARMA) software platform for demonstration testing. In later stages, the project team will develop mobility pilots that will use Level 4 ADS to improve accessibility for older adults and persons with disabilities and deploy them on the streets of Detroit. The pilots will be based on a discovery and ideation process with Detroit’s older adult and disabled communities and will leverage accessibility and human factors research underway at the University of Michigan’s Mcity facility.

- **Contra Costa Transportation Authority (CCTA)** – This project was selected to receive an award of $7,500,000 in Federal funding. This project team will demonstrate Level 3 and Level 4 vehicles using shared, on-demand, wheelchair-accessible ADS-equipped vehicles. The project supports specific accessibility goals by focusing on ADS services that support medical patients to include riders with disabilities, older adults, low-income, and others with mobility-challenges. This project is expected to increase transit accessibility for older adults and persons with disabilities. In addition to work with automated vehicles, the CCTA project will also install connected vehicle infrastructure along I-680 to support personal mobility.

- **University of Iowa** – This project was selected to receive an award of $7,026,769 in Federal funding. The project plans to connect rural transportation-challenged populations using a mobility-friendly ADS built on a commercially-available platform outfitted with a wheelchair lift and restraints. The demonstration will take place in Eastern Iowa, a region with variable seasons, rural roads, and roadway hazards. The route includes a loop from Iowa City through rural areas and small towns.

More information on these projects and the other proposals can be found on the USDOT website, which includes links to all ADS Demonstration Grant proposals submitted.9

Congestion Mitigation and Air Quality Improvement Program

FTA provided Congestion Mitigation and Air Quality (CMAQ) Improvement Program funding to the Santa Clara Valley Transit Authority (VTA) to lead a project called Accessible Automated Vehicle (AAV). The AAV project plans to develop an automated vehicle that complies with Americans with the Disabilities Act (ADA) and Buy America that could provide on-demand first-/last-mile service at the VA hospital complex in Palo Alto, California.10 VTA plans to integrate several human machine interface (HMI) concepts that could make...
autonomous vehicles more accessible and conduct usability research on those systems. The project will consider accessibility needs associated with physical, visual, auditory, and cognitive limitations. VTA plans to use a Local Motors Olli 2.0 shuttle, which is expected to be available in June 2020. VTA is working with the Metropolitan Transportation Commission, the Mineta Transportation Institute (MTI), Prospect Silicon Valley, and the VA Palo Alto Health Care System as well as private sector partners IBM, Local Motors, and Passenger.ai.

Other Domestic Activities

Automated Bus Consortium

The Automated Bus Consortium (ABC) is a joint procurement project led by AECOM to deploy full-size, full-speed automated buses in the U.S. The ABC was briefly described in the original Transit Bus Automation Market Assessment report. In September 2019, ABC members held an Industry Forum event in Detroit at which they presented on candidate pilot projects and draft automated bus specifications.11 Each ABC member conducted an analysis to determine the most appropriate pilot projects for automation and, as a group, consortium members identified the following applications: BRT (exclusive lanes), shuttle service (urban and rural), arterial rapid transit, express service (HOT/HOV lanes), fixed-route service, point-to-point service, and maintenance operations (bus yard/depot).12 As of the end of April 2020, the ABC website listed the following consortium partners:

- Connecticut Department of Transportation (CTDOT)
- Dallas Area Rapid Transit (DART)
- Foothill Transit
- Long Beach Transit Authority (LBTA)
- Los Angeles County Metropolitan Transit Authority (LA Metro)
- MetroLINK (Moline)
- Metropolitan Atlanta Rapid Transit Authority (MARTA)
- Metropolitan Transit Authority of Harris County (Houston)
- Michigan Department of Transportation (MDOT) / Planet M
- Minnesota Department of Transportation (MnDOT) / Rochester Public Transit (RPT)

• Pinellas Suncoast Transit Authority (PSTA)
• Virginia Department of Rail and Public Transportation (DRPT) / Hampton Roads Transit (HRT)

If feasible, by 2022, the ABC plans to deploy 75–100 buses in a variety of environments and share lessons learned for future technology planning.

Connected & Automated Transportation Users Forum

In September 2019, CALSTART, a national non-profit organization that promotes clean transportation technologies, announced that, as part of its Connected and Automated Transportation Users Forum (CATUF) effort, it would engage with transit agencies to develop specifications for a small, purpose-built automated transit bus. According to the initial requirements, the vehicle must be:

- Automated (SAE Level 4)
- Zero-emission (e.g., electric or hydrogen fuel cell powertrain)
- Compliant with Federal Motor Vehicle Safety Standards (FMVSS)
- Compliant with Buy America requirements
- Compliant with ADA requirements
- Designed to operate in all climate conditions
- Capable of accommodating 9–15 passengers and 2 wheelchairs
- Capable of operating at 20–30 mph

Although the effort is focused on developing an automated vehicle, CALSTART and the participating transit agencies anticipate a staff presence on board all vehicles while they are operating to fill in the role of safety operator and concierge. CALSTART worked with transit agencies to define key performance parameters and specifications. As of the end of April 2020, the CATUF website listed the following consortium partners:

- Access Services
- Contra Costa Transportation Authority (CCTA)
- Central Ohio Transit Authority (COTA)
- Golden Empire Transit District (GET)
- Jacksonville Transportation Authority (JTA)
- Maryland Department of Transportation (MDDOT)
- Michigan Department of Transportation (MDOT)

At the onset of this activity, CALSTART conducted listening tours with transit agencies and learned that existing automated vehicle pilot activities are not addressing all transit agency needs. In response to those findings, CALSTART designed its effort to focus on developing a purpose-built vehicle and emphasized building consensus across transit agencies to determine needs and enable scalable deployment. The group has developed a draft initial specification, and CALSTART issued a request for information (RFI) on it in April 2020.14

Other Innovative Procurement Strategies

Beyond federal-level grants and efforts such as ABC and CATUF, state and local governments are considering ways to encourage technology development and pilot testing. Michigan and Minnesota are two examples of states that have sought to use innovative procurement strategies that encourage the formation of public-private partnerships and provide public funding to advance the state of transit automation technology.

In May 2018, the State of Michigan announced the Michigan Mobility Challenge, an $8 million grant program to encourage pilot projects that use technology to improve mobility for older adults, persons with disabilities, and veterans. The Michigan Department of Transportation (MDOT) and the Michigan Economic Development Corporation (MEDC) managed the challenge, which attracted more than 40 proposals. Of those, 13 were selected to receive a grant, with grant amounts ranging from $100,000 to $2.1 million.15 The program was designed with a broad scope, and although not all proposals focused on automation or transit buses, two of the selected projects are particularly relevant to transit bus automation, including projects led by the Ann Arbor Area Transportation Authority (TheRide) and Pratt & Miller Engineering:

• **TheRide** – This project received an award of $187,000 to install automated wheelchair securement technology from Q’Straint on its buses.

• **Pratt & Miller** – This project received an award of nearly $2.2 million to construct and test an accessible automated shuttle.

The Minnesota Department of Transportation (MnDOT) is experimenting with a new procurement process through the Minnesota Connected and Automated (CAV) Challenge, which uses an ongoing Request for Proposals (RFP) that allows proposals to be submitted at any time. Organizations interested in applying can request a “Stage I” meeting to discuss ideas with MnDOT and receive feedback. Following the Stage I meeting, organizations can submit an application, which goes through a review process; proposals are evaluated quarterly, and unsuccessful applicants can meet with reviewers for further feedback. Through the Minnesota CAV Challenge, MnDOT has funded the Minnesota ABC effort as well as a 12-month automated shuttle project (the pilot will launch in May 2020 and use two EasyMile shuttles to provide service in downtown Rochester, Minnesota).

Rescoping of Domestic Automated Transit Bus Research

While research into transit bus automation systems continues, many technical and institutional challenges (e.g., funding availability, project deadlines, and industry participation) remain. As a result of such challenges, two of the domestic research projects featured in the original Transit Bus Automation Market Assessment report, those led by Pierce Transit and University of Nevada, Reno (UNR), have been rescoped to focus on driver warning systems that do not include automated actuation.

Pierce Transit has made progress on its FTA Safety Research andDemonstration (SRD) grant to implement automated emergency braking (AEB) technology in buses, and it has been testing the AEB system in stealth mode (no actuation) to gather data while operating buses in revenue service. In February 2020, the project team decided, in consultation with FTA, to postpone the automated braking component for revenue service testing. The project will move forward with testing the driver warning aspect of the system, while trying to engage the bus manufacturer (also known as an Original Equipment Manufacturer, OEM) for the automated braking component portion of the project. Pierce Transit also noted that considerations regarding liability and safety related to the automated braking component contributed to their decision to not move forward with that portion of their project unless the OEM was able to support the project.

For more than two years, UNR has been working to collect data from a human-driven bus using sensors that it installed on a Proterra bus operated by Regional Transportation Commission (RTC) of Washoe County. The effort has involved testing the placement and performance of sensors including on degraded roads, in limited visibility conditions, and in GPS-denied environments. UNR is using the research results to design a sensor bar that will include various sensors (e.g., lidar, radar, camera, and inertial measurement units) in a single piece of hardware. The sensor bar will provide data that can be used to enable driver assistance applications and will be designed to be easily installed or uninstalled, enabling UNR to move it from one bus to another or to upgrade sensors as needed. Although the original aim of the project was to develop algorithms to support transit bus automation, the current focus is to develop a system to detect objects and provide driver warnings for collision avoidance. In the future, when additional funding is available and a bus manufacturer is able to more actively engage in the research, UNR anticipates working on an AEB system for transit buses.

Support Systems for Accessibility in Automated Transit Buses

In addition to the role of driving, bus operators are responsible for many other non-driving responsibilities (see Appendix C of the STAR Plan), including assisting with the loading and securing of passengers with mobility devices. Automated systems that partially or fully address these tasks may provide benefits for both conventional transit buses with human operators as well as for future automated transit buses.

In March 2015, Q’Straint announced that its Quantum automated rear-facing wheelchair securement system was available on the market. The Quantum securement system is designed to allow wheelchair and scooter passengers to quickly self-secure without additional assistance from the bus operator. Many transit agencies are already using the system in their current operations.

Robotic Research, LLC has used the Quantum system along with other technologies to develop its own ParaLift concept, which has been installed in a RAM ProMaster 2500 van. In addition to the automated securement system, the ParaLift concept includes automated doors and an automated wheelchair lift that can be activated using an application on a mobile device, allowing a wheelchair user to board the vehicle and secure themselves. The concept also includes an external lidar sensor to ensure that the ramp deployment area is clear.

In October 2019, USDOT hosted the Access and Mobility for All Summit in Washington, DC. As part of the event, USDOT held an Innovation Showcase, which included demonstrations of accessible vehicles and other products. Among the products displayed were the Q’Straint Quantum system and the Robotic Research ParaLift system, which automate some of the non-driving tasks that would otherwise be the responsibility of a bus operator.

Automation Systems for Smaller Cutaway Buses

In early July 2019, Perrone Robotics announced that, in partnership with Albemarle County (Virginia) and JAUNT, Inc. (a regional public transportation system), it was beginning operation of Virginia’s first public automated shuttle service using a Polaris GEM e6 that it had upfitted with its TONY (TO Navigate You) system. Later that month, Perrone Robotics demonstrated its system during the Automated Vehicles Symposium (AVS) in Orlando.

The Perrone Robotics automation system is not tied to a specific vehicle platform. In addition to the Polaris GEM, the system has been installed on several other vehicle platforms, including passenger vans and cutaway vehicles, which are large enough to accommodate wheelchairs and meet other ADA requirements. Although such cutaway vehicles have yet to be used in an automated vehicle pilot or demonstration, Perrone Robotics has included ADA-compliant cutaway vehicles in its proposals for various funding opportunities.

In March 2020, Perrone Robotics and GreenPower Motor Company announced that they would work together to develop automated electric bus based on the GreenPower EV Star model, which can seat 16 passengers and two wheelchair users (the vehicle includes a wheelchair lift). According to the company announcement, the EV Star vehicle is Altoona-tested, compliant with FMVSS requirements, and will be compliant with Buy America requirements later in 2020. The two companies plan to offer the vehicle with the automated driving system factory installed (rather than added later as an aftermarket system).

23 A cutaway vehicle is a bus-body attached to a medium-duty truck or van chassis, such as those often used to provide demand-responsive or paratransit service.

Automated Shuttle Testing

The original Transit Bus Automation Market Assessment report identified many automated shuttle companies.\(^{25}\) In addition to those companies, many university projects, small startups, and regional firms are building and testing automated shuttles. Additional automated shuttle companies that are active in projects in the U.S. include Continental (Michigan), PerceptIn (Indiana), and Perrone Robotics (Virginia and Florida). Several other companies work on automated shuttles in Europe, including e.Go (Germany), Lohr (France), Milla (France), Sensible 4 (Finland), and Westfield (United Kingdom), Other companies active in developing and testing automated shuttles in Asia include Automotive Research & Testing Center (Taiwan), Baidu (China), Next Future Transportation (United Arab Emirates), ST Engineering (Singapore), and Toyota (Japan), In Oceania, the company Ohmio (New Zealand) has developed and tested its own automated shuttle.

Within the U.S., several companies began or announced new pilots:

- **Continental** – The German automotive supplier Continental refit an EasyMile EZ10 with its own sensor and automation technologies, calling it the “Continental Urban Mobility Experience” (CUbE).\(^{26}\) Continental is testing the CUbE in Michigan as well as internationally.

- **EasyMile** – Since November 2018, EasyMile has been operating an unstaffed shuttle at the TLD Group corporate campus in Sorigny, France,\(^{27}\) that relies on a remote supervisor who monitors the operation of the vehicle. EasyMile has expressed interest in providing similar unstaffed service at other private sites. In August 2019, EasyMile announced test activities at Austin-Bergstrom International Airport in Texas,\(^{28}\) and in early October, Dallas-Fort Worth International Airport (DFW) announced that it would also conduct a pilot with an EasyMile shuttle.\(^{29}\) In early 2020, several new EasyMile pilots commenced, including projects in Columbus, Ohio; Corpus Christi, Texas; Gainesville, Florida; Fairfax County, Virginia; and Raleigh, North Carolina.

\(^{25}\) Automated shuttle companies mentioned in the report include 2getthere, Coast Autonomous, EasyMile, Local Motors, May Mobility, Navya, Optimus Ride, Ridecell (formerly Auro Robotics), and Robotic Research.

Following an incident in Columbus, Ohio, NHTSA suspended passenger operations for the 16 EasyMile shuttles that had been operating in 10 states, and later lifted the suspension in May 2020.

- **Local Motors** – In June 2019, Local Motors began a pilot at Joint Base Myer-Henderson Hall near Washington, D.C. The company also announced shuttle operations at Rancho Cordova and GoMentum Station in California. Local Motors unveiled its second-generation vehicle, Olli 2.0, in August 2019. In February 2020, Robotic Research LLC announced that it would begin testing an unstaffed Local Motors Olli shuttle at a facility in Clarksburg, Maryland, beginning in the second quarter of 2020.

- **May Mobility** – May Mobility continues to operate shuttles in Detroit, Michigan, and Providence, Rhode Island. In July 2019, it launched a pilot in Grand Rapids, Michigan. The pilot in Columbus, Ohio, was completed in September 2019, but will be followed up with additional automated shuttle activity, such as the EasyMile shuttle pilot in Linden, Ohio, and other pilots planned in Youngstown and Athens, Ohio.

- **Navya** – In early 2019, Jacksonville Transit Authority began testing a Navya shuttle on its test track in Florida, and in Fall 2019, operator Beep began

operating three Navya shuttles in the Lake Nona entertainment district with residential communities. In April 2020, the four shuttles in Florida were relocated to the Mayo Clinic campus and began unstaffed operations to transport COVID-19 samples between a test site and processing laboratory.

- **Optimus Ride** – In August 2019, Optimus Ride launched a pilot at the Brooklyn Navy Yard in New York, and in October 2019, it showcased its vehicles at the Halley Rise development in Reston, Virginia. The company has also began operating a pilot at Paradise Valley Estates in Fairfield, California.

- **PerceptIn** – In November 2019, PerceptIn announced that it would move its headquarters to the Indiana IoT Lab in Fishers, Indiana, and also announced plans to launch a pilot project that will provide service from its new headquarters to downtown Fishers.

International Projects

This section provides information on selected recent projects in Asia (including activities in Japan, Singapore, and Taiwan) and Europe (including a multinational procurement effort and activities in Sweden and United Kingdom).

Japan – Automated Transit Bus Demonstration

Yokohama City, Sotetsu Bus, and Gunma University partnered to test automated full-size transit buses. During the Satoyama Garden Festa 2019 Autumn in September and October 2019, the team conducted demonstrations of SAE Level 2 automated buses. Up to 25 passengers rode on the bus as it operated on a fixed route between the main gate of Yokohama Zoo and the front entrance of Satoyama Garden. The team will build on the demonstration results and has plans to test transit buses with higher levels of automation.

Singapore – Automated Transit Bus Operator Training

In October 2019, the Singapore Land Transport Authority (LTA), along with industry stakeholders, 44 signed a memorandum of understanding (MOU) to train public bus drivers to operate automated buses. 45 As a result of the MOU, approximately 100 public bus drivers will be trained, and additional drivers will be trained as the technology improves. The program includes training for the roles of on-board safety operators and remote monitors. The initial cohort of trainees will support automated bus operations in Punggol, Tengah, and the Jurong Innovation District, which are likely to begin in 2022. ST Engineering and SBS Transit had already trained 15 operators to support an automated shuttle pilot on Sentosa Island that ran from August to November 2019.

Taiwan – Automated Transit Bus Service

In 2018 and 2019, LILEE Systems conducted proof-of-concept and proof-of-service projects in Taichung, Taiwan to demonstrate reliability and speed to market of autonomous rapid transit (ART). As part of that work, it provided service to more than 7,500 passengers in a retrofitted 30-foot diesel automated bus along a 2.9 km (1.8 mi) route on public roads. In March 2020, LILEE Systems announced a partnership with Tainan City in Taiwan to launch revenue service operations that will collect fares from passengers who ride the automated transit buses. The service will include two routes, and operations are expected to commence in the second half of 2020. 46

Another company, Turing Drive, will begin testing its automated buses in Taipei beginning in May 2020, followed by passenger service in September 2020. The planned test route will run along Xinyi Road in dedicated bus lanes from Zhongshan South Road to Keelung Road (approximately 1.2 km or 0.75 miles). Initial testing will take place at night (midnight to 2:30 AM) and speeds will be limited to 15 km/h (9.3 mph), with testing times and speeds being adjusted as the trials progress. 47

44 In addition to LTA, signatories include the National Transport Workers’ Union, ST Engineering, SBS Transit, SMRT Buses, Tower Transit Singapore, Go-Ahead Singapore, Workforce Singapore, and the Employment and Employability Institute.

Europe – Automated Transit Bus Procurement Project

The goal of the Future Automated Bus Urban Level Operation Systems (FABULOS) project is to convene multiple cities across Europe to jointly procure automated transit buses, which will then be used in mixed traffic on public roads, providing rides to real passengers. The FABULOS project runs from January 2018 through December 2020.48 The FABULOS project received nearly €7 million from the EU Horizon 2020 program and has a total budget of approximately €7.75 million.49

The project has six partner cities—Helsinki, Finland; Tallinn, Estonia; Gjesdal, Norway; Helmond, Netherlands; Lamia, Greece; and Porto, Portugal—that are interested in procuring an all-inclusive solution (e.g., fleet, software, hardware, and services). The purpose of combining efforts in defining a standard and jointly procuring the buses is to help support the market development of these systems, which has been slow to date (an issue identified in the original Transit Bus Automation Market Assessment report). This method of procurement (called “pre-commercial procurement”) allows the cities to engage with multiple private vendors and steer development of solutions to meet their needs, while allowing intellectual property rights to stay with the private sector participants.

The Open Market Consultation occurred in Spring 2018, and in September 2018, FABULOS launched a request for tender. In December 2018, it awarded five consortia with contracts to participate in the first phase (solution design) of the pre-commercial procurement, and in May 2019, there was an additional down selection to four consortia to proceed to the second phase (prototyping and lab testing). Following another down selection to three consortia in February 2020, the third phase (field testing) began in March 2020.

Sweden – Automated Transit Bus Demonstration

Partnering with bus operator Keolis and technology company ABB, Volvo demonstrated automated yard operations on an electric 40-ft transit bus at a Keolis bus depot near Gothenburg, Sweden, in November 2019.50 In the demonstration, the bus drove from the parking bay to other locations for cleaning, servicing, and charging operations, then returned to its designated

parking bay. Volvo has highlighted several benefits from automated bus yard operations, including more efficient traffic flows, higher productivity, less damage from unintentional collisions, and improved safety. The company has also pitched yard operations as an early application for automated buses, given the confined and highly-controlled operating environment with repetitive traffic flows.

United Kingdom – Automated Transit Bus Demonstration

Project CAVForth is a Scottish automated bus pilot jointly led by bus manufacturer Alexander Dennis (owned by New Flyer), bus operator Stagecoach, and technology firm Fusion Processing. In November 2019, Project CAVForth demonstrated its automated Alexander Dennis Enviro200 bus prototype in the Scottish Event Campus (SEC) parking lot during the Connected and Autonomous Vehicles Summit in Glasgow. Project CAVForth demonstrated its automated Alexander Dennis Enviro200 bus prototype in the Scottish Event Campus (SEC) parking lot during the Connected and Autonomous Vehicles Summit in Glasgow. Stagecoach has been conducting a series of tests at its depot in Manchester, and the team plans to formally launch service operations with automated driving along a route between Fife and Edinburgh later in 2020.

Key Points

The October 2019 Transit Bus Automation Market Assessment report characterized the state of the market and identified several key findings. Whereas those previous findings still hold, this update has brought to light additional key findings, including the following:

- **To the extent that they exist, transit automation systems are prototypes rather than commercialized products.** Progress on prototype testing has continued, and some new automated transit bus pilot tests have been announced, but there have been no announcements of new products that have been commercialized or that will be commercially available in the near future.

- **In the face of mounting challenges, some projects have focused on addressing driver warning systems instead of automation systems.** In some cases, research projects to develop and test transit bus automation systems have been rescoped to focus on driver assistance systems (e.g., driver warnings), with automated actuation (e.g., of braking systems) postponed until the technology has been further developed, additional resources are available, or bus manufacturers more aggressively engage in the process.

- **Participation of bus manufacturers is seen as necessary to develop systems that are safe and scalable.** Although retrofit products may be useful for small, agile proof-of-concept testing, transit agencies prefer to work with bus manufacturers for integrated solutions. Factory-installed

systems that have been integrated by the bus manufacturer are more attractive due to considerations regarding issues such as those related to procurement, liability, and safety.

- **Some transit agencies are looking to collective action as an option to stimulate automated transit bus development.** To overcome some of the issues related to low volumes and high customization, some transit agencies have joined efforts through consortia such as ABC, CATUF, and FABULOS to jointly specify and procure automated transit buses. Through such cooperative efforts, participating members hope to incentivize industry to develop automated transit bus products that meet their needs.

- **Companies are developing capabilities for unstaffed operation, but transit agencies plan to retain an official staff presence on vehicles for the foreseeable future.** The broader use of unstaffed operation on public roads in mixed traffic remains a distant capability, and many transit agencies have expressed the need for an official staff presence on their buses. However, some companies, such as EasyMile, Navya, and Robotics Research, are beginning to experiment with unstaffed vehicles on private sites or other closed test environments.

- **Automated transit buses will require new workforce skills and capabilities.** Transit agencies are increasingly aware of workforce training needs due to the adoption of other technologies (e.g., new vehicle powertrains and new information systems). Although it may be too soon for most transit agencies to invest in such training, regions with aggressive automated vehicle testing plans, such as Singapore, are already working to address this need.
Addendum References

